Презентация на тему: Трансформатор. Трансформатор (от лат. transformo преобразовывать) это статическое электромагнитное устройство, имеющее две или более.

Презентация:



Advertisements
Похожие презентации
Трансформатор Трансформатор (от лат. transformo – преобразую) в технике, устройство для преобразования к.-л. существенных свойств энергии или объектов.
Advertisements

Подготовила ученица 11 «А» класса Фетисова Оксана.
Презентация на тему «Трансформатор и его применение»
ТРАНСФОРМАТОРЫ Составитель: Ломашова Наталья Михайловна, преподаватель электротехники высшей категории ГБПОУ СО «Сызранский техникум металлообрабатывающих.
Трансформаторы.
Трансформаторы Автор : студент гр. АМ Мартюшев Данил Руководитель : Преподаватель Головков А. Н. Еловский филиал ГБОУ СПО Осинский профессионально.
Методическая разработка на тему: Презентация "Трансформатор"
Урок по теме Трансформаторы Производство и передача электроэнергии Новосарбайская школа 2006 год учитель физики Сырова О.Ю.
Переменный электрический ток Вынужденные электромагнитные колебания Амплитудное значение силы тока Действующие значения силы тока и напряжения.
Презентация на тему Трансформатор. Передача электрической энергии на расстояние.
Трансформатор – устройство, применяемое для повышения или понижения переменного напряжения.
ТрансформаторТрансформатор Общие сведения. Кроссворд отгадай кроссворд и узнаешь тему урока
1878г Г.Н. Яблочков впервые изобрел трансформатор.
Q= I 2 Rt Электрический ток нагревает провода линии электропередачи. При очень большой длине линии, передача энергии может стать экономически невыгодной.
ПРИЯТНОГО ПРОСМОТРА ЫРОТАМРОФСНАРТ.
Презентация по физике на тему: Трансформаторы Выполнила:Романова Мария, 11 класс,2010 год. Учитель:Касерес М.О.
Машины переменного тока Т рансформаторы Переходя к теме «Машины переменного тока» Повторите тему: «Цепи синусоидального переменного тока» по электротехнике!
Презентация на тему: «Трансформаторы тока и напряжения» Выплнил: Шестаков В.В. Приняла: Старостина Н.С.
Трансформаторы Степанова М.М. Тема занятия: Трансформаторы Цель занятия: обобщить и углубить знания студентов о трансформаторах; их устройстве и принципе.
Что такое трансформатор и коэффициент трансформации? Трансформатор -статическое электромагнитное устройство, имеющее две или более индуктивно связанных.
Транксрипт:

Презентация на тему: Трансформатор

Трансформатор (от лат. transformo преобразовывать) это статическое электромагнитное устройство, имеющее две или более индуктивно связаные обмотки на каком- либо магнитопроводе и предназначеное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменого тока в одну или несколько других систем (напряжений), без изменения частоты. Трансформатор осуществляет преобразование переменого напряжения и/или гальваническую развязку в самых различных областях применения электроэнергетике, электронике и радиотехнике. Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированых проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотаных, как правило, на магнитопровод (сердечник) из ферромагнитного магнито- мягкого материала.

Схематическое устройство трансформатора. 1 первичная обмотка 2 вторичная Работа трансформатора основана на двух базовых принципах: Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм) Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

Для передачи и распределения электрической энергии. Обычно на электростанциях генераторы переменого тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения. Распределение электрической энергии между промышлеными предприятиями, населёными пунктами, в городах и сельских местностях, а также внутри промышленых предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В (рис. 1.1)

-Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя. Трансформаторы, применяемые для этих целей, называются преобразовательными. -Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др. -Для питания различных цепей радиоаппаратуры, электроной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указаных устройств, для согласования напряжения и пр. - Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопасности. Трансформаторы, применяемые для этих целей, называются измерительными.

Классификацию трансформаторов можно произвести по нескольким признакам: 1. По назначению трансформаторы разделяют на силовые общего и специального применения. Силовые трансформаторы общего применения используются в линиях передачи и распределения электроэнергии. Для режима их работы характерна частота переменого тока 50 Гц и очень малые отклонения первичного и вторичного напряжений от номинальных значений. К трансформаторам специального назначения относятся силовые специальные (печные, выпрямительные, сварочные, радио трансформаторы), измерительные и испытательные трансформаторы, трансформаторы для преобразования числа фаз, формы кривой ЭДС, частоты и т.д. 2. По виду охлаждения – с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением. 3. По числу фаз на первичной стороне – однофазные и трёхфазные. 4. По форме магнитопровода – стержневые, броневые, тороидальные. 5. По числу обмоток на фазу – двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток). 6. По конструкции обмоток – с концентрическими и чередующимися (дисковыми) обмотками.

Таким образом, мгновеные значения ЭДС, индуцированые в каждой обмотке. ;. Следовательно, отношение мгновеных и действующих ЭДС в обмотках определяется выражением (1.1) E 1 / E 2 = e 1 / e 2 = w 1 / w 2. Если пренебречь падениями напряжения в обмотках трансформатора, которые обычно не превышают 3-5 % от номинальных значений U 1 и U 2, и считать E 1 U 1 и E 2 U 2, то получим (1.2) U 1 / U 2 w 1 / w 2. Следовательно, подбирая соответствующим образом числа витков обмоток, при заданом напряжении U 1 можно получить желаемое напряжение U 2. Если необходимо повысить вторичное напряжение, то число витков w 2 берут больше числа w 1 ; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U 2, то число витков w 2 берут меньшим w 1 ; такой трансформатор называют понижающим.

Отношение ЭДС E вн обмотки высшего напряжения к ЭДС Е н обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации (1.3). Коэффициент n всегда больше единицы. В системах передачи и распределения энергии в ряде случаев применяют трёхобмоточные трансформаторы, а в устройствах радиоэлектроники и автоматики – многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированых друг от друга обмоток, что даёт возможность при питании одной из обмоток получать два или большее число различных напряжений (U 2, U 3, U 4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжения. В трансформаторе преобразуются только напряжения и токи. Мощность же остаётся приблизительно постояной (она несколько уменьшается из- за внутрених потерь энергии в трансформаторе). Следовательно, полная мощность потребляемая из сети S 1 = U 1 I 1,

, практически полностью выделяется на нагрузке S 1 = U 1 I 1 S 2 = U 2 I 2. Отсюда следуют соотношения между токами и напряжениями на первичной и вторичной обмотках трансформатора.(1.4) U 1 / U 2 = I 2 / I 1 = w 1 / w 2 = n. При уменьшении вторичного напряжения в n раз по сравнению с первичным, ток i 2 во вторичной обмотке соответствено увеличится в n раз. Трансформатор может работать только в цепях переменого тока. Если первичную обмотку трансформатора подключить к источнику постояного тока, то в его магнитопроводе образуется магнитный поток, постояный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а, следовательно, не передаётся электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС E 1 в первичной обмотке ток I 1 = U 1 / R 1 весьма большой. Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать сопротивление нагрузки. Если к источнику переменого тока подключить нагрузку с сопротивлением R через трансформатор с коэффициентом трансформации n, то для цепи источника(1.5),

где: Р 1 – мощность, потребляемая трансформатором от источника переменого тока, Вт; – мощность, потребляемая нагрузкой с сопротивлением R от трансформатора. Таким образом, трансформатор изменяет значение сопротивления нагрузки R в n 2 раз. Это свойство широко используется при разработке электрических схем для согласования сопротивлений нагрузки с внутреним сопротивлением источников электрической энергии.

Магнитная система. В зависимости от конфигурации магнитной системы, трансформаторы подразделяют на стержневые (рис. 1.3, а), броневые (рис.1.3, б) и тороидальные (рис. 1.3, в). Стержнем называют часть магнитопровода, на которой размещают обмотки (рис. 1.3; 2). Часть магнитопровода, на которой обмотки отсутствуют, называют ярмом (рис. 1.3; 1). Трансформаторы большой и средней мощности обычно выполняют стержневыми. Они имеют лучшие условия охлаждения и меньшую массу, чем броневые.

Трансформатор силовой ОСМ 0,16 Однофазный Сухой Многоцелевого назначения мощностью 0,16 кВА

Опыт короткого замыкания Вторичную обмотку замыкают накоротко сопротивление Z н = 0), а к первичной подводят пониженое напряжение (см. рис.1.12) такого значения, при котором по обмоткам проходит номинальный ток I ном. В мощных силовых трансформаторах напряжение U к при коротком замыкании обычно составляет 5-15% от номинального. В трансформаторах малой мощности напряжение U к может достигать % от U ном. Рис Так как поток, замыкающийся по стальному магнитопроводу, зависит от напряжения приложеного к первичной обмотке трансформатора, а магнитные потери в стали пропорциональны квадрату индукции, т.е. квадрату магнитного потока, то ввиду малости U к пренебрегают магнитными потерями в стали и током холостого хода. При этом из общей схемы замещения трансформатора исключают сопротивления R 0 и X 0 и преобразуют ее в схему, показаную на (рис 1.13, а). Параметры этой схемы определяют из следующих соотношений: (1.34)

Работу выполнила: Никодамова Надежда Спасибо за просмотр