Презентация к уроку по физике (11 класс) по теме: Фотоэффект

Презентация:



Advertisements
Похожие презентации
Применение фотоэффекта
Advertisements

Фотоэффект Раздел современной физики Квантовая физика изучает свойства, строение атомов и молекул, движение и взаимодействие микрочастиц.
Открытие фотоэффекта. Фотоэффект Фотоэффект – вырывание электронов из вещества под действием света В 1887 году Генрих Герц открыл фотоэффект1887 годуГенрих.
Явление фотоэффекта. Выполнили: Венжена Дарья, Винокуров Евгений.
ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ – ОСНОВА ЖИЗНИ Интегрированный день в 11 классе Сазонов Василий Викторович, МОУ СОШ д.Васькино.
Фотоэффект учитель физики Гармаш Л.Д.. Фотоэффект (внешний) – вырывание электронов из вещества под действием падающего света 1887 г. Генрих Рудольф Герц.
Оглавление Фотоэффект Внешний фотоэффект Внутренний фотоэффект Опыт Герца Опыт Столетова Схема зависимости I от U Экспериментальные законы фотоэффекта.
Фотоэффект Повторим пройденный материал 1. Расскажите об инфракрасном излучении по плану: o Источник излучения o Свойства o Применение 2. Расскажите об.
Сигаева В.В., учитель физики. Фотоэффект - любые изменения, которые происходят с веществом при поглощении им электромагнитного излучения.
Фотоэффект Столетов Александр Григорьевич Выдающийся русский физик Исследовал свойства ферромагнетиков, несамостоятельный газовый разряд. Опытным.
ФОТОЭФФЕКТ Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально Г. Герцем.
Фотоэффект и его применение 1.Фотоэффект. Опыты Столетова. Законы фотоэффекта. 2. Теория фотоэффекта. Уравнение Эйнштейна. Красная граница фотоэффекта.
Фотоэффект Фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света. открыт в 1887.
Электронное пособие по физике. Государственное образовательное учреждение НПО Профессиональный лицей 15 Выполнила: Выполнила: преподаватель физики Варламова.
Открыт в 1887 году немецким физиком Генрихом Герцем Открыт в 1887 году немецким физиком Генрихом Герцем Экспериментально исследован в годах.
Александр Беккерель Уиллоби Смит В 1839 году А.Беккерель обнаруживает фотоЭДС на контакте разнородных металлов Английский физик Уиллоби Смит в 1873 году.
ФОТОЭФФЕКТ Выполнил : ученик 11 А класса Романов Артем.
Зарождение квантовой физики («ультрафиолетовая катастрофа») Идея Планка. Открытие фотоэффекта. Опыты Герца. Законы фотоэффекта. Исследования Столетова.
Преподаватель физики ПЛ-87: Бердникова Галина Петровна.
Транксрипт:

Фотоэффе́кт это испускание электронов веществом под действием ультрафиолетового света. В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

История изучения В 1839 году французский физик Александр Беккерель наблюдал явление фотоэффекта в электролите. В 1873 году английский инженер-электрик Уиллоуби Смит обнаружил, что селен является фотопроводящим.

Затем эффект изучался в 1887 году Генрихом Герцем. Чтобы лучше видеть искру в своих опытах, Герц поместил приёмник в затемнённую коробку. При этом он заметил, что в коробке длина искры в приёмнике становится меньше. Тогда Герц стал экспериментировать в этом направлении, в частности, он исследовал зависимость длины искры в случае, когда между передатчиком и приёмником помещается экран из различных материалов. Полученные результаты явились открытием нового явления в физике, названного фотоэффектом.

годах фотоэффект систематически изучал русский физик Александр Столетов. Им были сделаны несколько важных открытий в этой области, в том числе выведен первый закон внешнего фотоэффекта.

Фотоэффект был объяснён в 1905 году Альбертом Эйнштейном на основе гипотезы Макса Планка о квантовой природе света (за что в 1921 году Энштейн, благодаря номинации шведского физика Карла Вильгельма Озеена, получил Нобелевскую премию). В работе Эйнштейна содержалась важная новая гипотеза если Планк в 1900 году предположил, что свет излучается только квантованными порциями, то Эйнштейн уже считал, что свет и существует только в виде квантованных порций. Из закона сохранения энергии, при представлении света в виде частиц (фотонов), следует формула Эйнштейна для фотоэффекта: h v = A вых + mv 2 2

Из этой формулы следует существование красной границы фотоэффекта, то есть существование наименьшей частоты, ниже которой энергии фотона уже недостаточно для того, чтобы «выбить» электрон из металла. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества и на работу, необходимую для «вырывания» электрона, а остаток переходит в кинетическую энергию электрона.

Исследования фотоэффекта были одними из самых первых квантовомеханических исследований. Исследования фотоэффекта показали, что, вопреки классической электродинамике, энергия вылетающего электрона всегда строго связана с частотой падающего излучения и практически не зависит от интенсивности облучения.

Законы фотоэффекта 1-й закон: Сила фототока прямо пропорциональна плотности светового потока. 2-й закон: Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности. 3-й закон: Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны), при которой ещё возможен фотоэффект.

Внешний фотоэффект Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Фотокатод электрод вакуумного электронного прибора, непосредственно подвергающийся воздействию электромагнитных излучений и эмитирующий электроны под действием этого излучения. Зависимость спектральной чувствительности от частоты или длины волны электромагнитного излучения называют спектральной характеристикой фотокатода.

Внутренний фотоэффект Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твёрдых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.

Фотон Фото́н элементарная частица, квант электромагнитного излучения (в узком смысле света). Это без массовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны. В физике фотоны обозначаются буквой γ. Фотон самая распространённая по численности частица во Вселенной. На один нуклон приходится не менее 20 миллиардов фотонов.

Приборы, в основе принципа действия которых лежит явление фотоэффекта, называют фотоэлементами. Применение фотоэффекта

Фотоэлементы, использующие внешний фотоэффект, преобразуют в электрическую энергию лишь незначительную часть энергии излучения. Поэтому в качестве источников электроэнергии их не используют, зато широко применяют в различных схемах автоматики для управления электрическими цепями с помощью световых пучков.

С помощью фотоэлементов осуществляется воспроизведение звука, записанного на кинопленке а также передача движущихся изображений (телевидение).

На внешнем фотоэффекте основана работа электронно-оптического преобразователя (ЭОП), предназначенного для преобразования изображения из одной области спектра в другую, а также для усиления яркости изображений. В медицине ЭОП применяют для усиления яркости рентгеновского изображения, это позволяет значительно уменьшить дозу облучения человека.

На фотоэффекте основано превращение светового сигнала в электрический. Электрическое сопротивление полупроводника падает при освещении; это используется для устройства фотосопротивлений. При освещении области контакта различных полупроводников возникает фото- эдс, что позволяет преобразовывать световую энергию в электрическую.

Фотоэлектронные умножители позволяют регистрировать очень слабое излучение, вплоть до отдельных квантов.