Четверг, 23 июля 2015 г. Колебания и волны. Геометрическая и волновая оптика.

Презентация:



Advertisements
Похожие презентации
ГЕОМЕТРИЧЕСКАЯ И ВОЛНОВАЯ ОПТИКА. КОРПУСКУЛЯРНО-ВОЛНОВАЯ ТЕОРИЯ СВЕТА. 1. Оптическое излучение 2. Геометрическая оптика 3. Развитие взглядов на природу.
Advertisements

Оптика - раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части:
Корпускулярная Изучением данной теории занимался Ньютон Свет – это поток частиц, идущих от источника во все стороны (перенос вещества ) Затруднения: Почему.
Преломление света Дисперсия света. Прямолинейное распространение света В оптически однородной среде свет распространяется прямолинейно. Прямолинейностью.
Лекции по физике. Оптика Геометрическая оптика. 2 Основные законы оптики 1. Закон прямолинейного распространения света (в однородной среде) 2. Закон независимости.
Дифракция света Дифракция света Характерным проявлением волновых свойств света является дифракция света отклонение от прямолинейного распространения.
Геометрическая оптика. Тема урока: «Прямолинейное распространение света. Законы отражения и преломления света».
Развитие взглядов на природу света Волновые и квантовые свойства света.
Оптика. Свет.. Определение. Оптика (от др.-греч. πτική появление или взгляд) раздел физики, рассматривающий явления, связанные с изменением во времени.
Интерференция. Дифракция. Мясникова Г. И. Учитель физики.
Основные законы геометрической оптики. Принцип Гюйгенса (1690) Каждая точка среды, до которой дошло возмущение, является источником вторичных сферических.
ГЕОМЕТРИЧЕСКАЯ ОПТИКА. Геометрическая оптика- раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых.
Cиние лучи, падающие на Землю от Солнца, рассеиваются молекулами воздуха примерно в 6 раз сильнее красных, поэтому небо выглядит голубым, а солнце тем.
Оптика – раздел физики, изучающий свойства и физическую природу света, а также его взаимодействие с веществом. Учение о свете принято делить на три части.
Свет как электромагнитная волна Учитель: Галина Николаевна Студентка группы 1414 Грошева Алина.
ГЕОМЕТРИЧЕСКАЯ ОПТИКА , нм 0 Линии, вдоль которых распространяется световая энергия называются лучами. Совокупность лучей образует световой.
Геометрическая оптика Природу нельзя застигнуть неряшливой и полураздетой, она всегда прекрасна Р. Эмерсон, американский философ XIX в.
Оптика 11 класс. Оптика Оптика Оптика – раздел физики, изучающий закономерности световых явлений, природу света и его взаимодействие с веществом. Оптика.
Сегодня: четверг, 20 февраля 2014 г. ДАВЛЕНИЕ СВЕТА Рассмотренные нами явления интерференции, дифракции, поляризации объясняются с точки зрения волновой.
Волновая оптика. Дисперсия света Интерференция света Дифракция света Дифракционная решетка Поляризация света 2.
Транксрипт:

четверг, 23 июля 2015 г. Колебания и волны. Геометрическая и волновая оптика

Тема 7 ГЕОМЕТРИЧЕСКАЯ И ВОЛНОВАЯ ОПТИКА. КОРПУСКУЛЯРНО-ВОЛНОВАЯ ТЕОРИЯ СВЕТА. 7.1 Оптическое излучение Сегодня: четверг, 23 июля 2015 г. 7.2 Геометрическая оптика 7.3Развитие взглядов на природу света 7.4 Корпускулярно-волновой дуализм 7.5 Основные характеристики световых волн 7.6 Световые, или фотометрические величины 2

1. Оптическое излучение Оптика – (от греч. optike – наука о зрительных восприятиях) – раздел физики, в котором изучаются оптическое излучение (свет), его распространение и явления, наблюдаемые при взаимодействии света и вещества. Оптическое излучение представляет собой электромагнитные волны, и поэтому оптика – часть общего учения об электромагнитном поле. 3

Оптический диапазон длин волн ограничен с одной стороны рентгеновскими лучами, а с другой – микроволновым диапазоном радиоизлучения. Такое ограничение условно и в значительной степени определяется общностью технических средств и методов исследования явлении в указанном диапазоне. 4

5 Эксперимент И. Ньютона

По традиции оптику принято подразделять на геометрическую, физическую и физиологическую. 6

Геометрическая оптика, не рассматривая вопрос о природе света, исходит из эмпирических законов его распространения и использует представление о световых лучах, отражающихся и преломляющихся на границах сред с разными оптическими свойствами и прямолинейных в оптически однородной среде. 7

Наибольшее значение геометрическая оптика имеет для расчета и конструирования оптических приборов – от очковых линз до сложных объективов и огромных астрономических инструментов. 8

9

10

Физическая оптика рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений. 12

Устройство лазера 13

Физиологическая оптика изучает строение и функционирование всего аппарата зрения – от глаза до коры мозга; разрабатывается теория зрения, восприятия света и цвета. 14

15

Результаты физиологической оптики используются в медицине, физиологии, технике при разработке разнообразных устройств – от осветительных приборов и очков до цветного кино и телевидения. 16

7.2 Геометрическая оптика Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птоломей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось. 17

18

Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю. Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики. 19

Четыре закона геометрической оптики, установленные опытным путем: 1. закон прямолинейного распространения света; 2. закон независимости световых лучей; 3. закон отражения; 4. закон преломления света. 20

1. Закон прямолинейного распространения света: свет в оптически однородной среде распространяется прямолинейно. Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров. 21

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах Если размеры препятствия много больше длины волны, то волны за него не проникают, создается область тени 22

Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны, когда Луна попадает в тень Земли. Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько фаз: Частные фазы лунного затмения 23

Проявление прямолинейного распространения света – образование тени. Солнечное затмение

Прямолинейный ход световых лучей в оптических приборах Изображенные на фотопленке элементы микросхемы проецируются на кристалл кремния, где получается подобное уменьшенное (с помощью системы линз) изображение микросхемы. Специальная обработка позволяет превратить это изображение в печатную микросхему 25

26 Огибание электромагнитными волнами препятствий и проникновение их в область геометрической тени наиболее отчетливо обнаруживается в тех случаях, когда размер огибаемых препятствий соизмерим с длиной волны Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Ферма Пьер (1601 – 1665) – французский математик и физик. Родился в Бомон-де-Ломань. Получил юридическое образование. С 1631 г. был советником парламента в Тулузе. Физические исследования относятся в большинстве к оптике, где он установил (примерно в 1662 г.) основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов. 27

Принцип Ферма: свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время. 28

У горизонта Солнце кажется на 1 2 градуса выше, чем на самом деле 29

Еще пример того же рода – мираж, который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, а когда подходят туда, то кругом оказывается песок. Сущность явления в следующем. То, что мы видим в этом случае, это прошедший над песком свет. На рис. показано, как падающий на дорогу луч света попадает нам в глаз. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. 30

31

3h 2h h 0 Y n min n max n1n1 n2n2 n3n3 X0 A2A2 A1A1 α0α0 X1X1 X2X2 α1α1 α2α2 Модель неоднородной среды 32

Криволинейное распространение луча в неоднородной среде 33

2. Закон независимости световых пучков: эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо. Производимое одним пучком действие не зависит от наличия других пучков 34

3. Закон отражения S 1 - отражающая поверхность; S 2 - плоскость падения; АО - падающий луч; ОВ - отраженный луч; ON - нормаль к отражающей поверхности. Угол падения равен углу отражения. Отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, к границе раздела двух сред в точке падения. 35

Доказательство этого закона вытекает из принципа Гюйгенса. Принцип Гюйгенса Каждая точка, до которой доходит световое возбуждение, является в свою очередь центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны. 36

37

38 нидерландский механик, физик и математик Гаага, Нидерланды (Hague, Netherlands) Христиан Гюйгенс Christiaan Huygens –

39 французский физик Броли, Франция (Broglie, France) Ville-d'Avray, France Огюстен Жан Френель Augustin Jean Fresnel –

Для доказательства закона отражения рассмотрим рисунок: угол падения i 1 равен углу отражения i 1 : i 1 = i 1. 40

Когда фронт волны (А В)достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну. Для прохождения волной расстояния ВС требуется время Δt = BC/υ. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен υΔt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол отражения i 1 равен углу падения i 1. 41

4. Закон преломления: отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред: луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; 42

Тогда ВС = с t. За это же время фронт волны, возбуждаемой точкой А в среде со скоростью, достигнет точек полусферы, радиус которой AD = t. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения - лучом III. Из рис. следует, что Для вывода закона преломления предположим, что плоская волна (фронт волны-АВ), распространяющаяся в вакууме вдоль направления I со скоростью с, падает на границу раздела со средой, в которой скорость ее распространения равна. Пусть время, затрачиваемое волной для прохождения пути ВС, равно t. 43

Из симметрии этого выражения вытекает обратимость световых лучей: если обратить луч III, заставив его падать на границу раздела под углом i 2, то преломленный луч в первой среде будет распространяться под углом i 1, т. е. пойдет в обратном направлении вдоль луча I. 44

Явление полного отражения. Если свет распространяется из среды с большим показателем преломления п 1 (оптически более плотной) в среду с меньшим показателем преломления п 2 (п 1 > п 2 ), например из стекла в воду, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления i 2 больше, чем угол падения i 1 (рис. а). п 1 > п 2 45

С увеличением угла падения увеличивается угол преломления (рис. б, в), до тех пор пока при некотором угле падения (i 1 = i пр ) угол преломления не окажется равным π/2. Угол i пр называется предельным углом. Если i 1 = i пр, то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. г). При углах падения i > i np весь падающий свет полностью отражается (рис. г). 46

Таким образом, при углах падения в пределах от i пр до π/2 луч не преломляется, а полностью отражается в первую среду, причем интенсивности отраженного и падающего лучей одинаковы. По мере приближения угла падения к предельному интенсивность преломленного луча уменьшается, а отраженного - растет. Это явление называется полным отражением. 47

Эти уравнения удовлетворяют значениям угла i np при п 2 < п 1 Следовательно, явление полного отражения имеет место только при падении света из среды оптически более плотной в среду оптически менее плотную. Предельный угол i np определим из формулы при подстановке в нее i 2 = π /2. Тогда 48

Явление полного отражения исполь- зуется в призмах полного отражения. Показатель преломления стекла равен n 1,5, поэтому предельный угол для границы стекло – воздух i np = arcsin (1/1,5) = 42°. При падении света на границу стекло воздух при i > 42° всегда будет иметь место полное отражение. На рис. а в показаны призмы полного отражения, позволяющие: а) повернуть луч на 90°; б) повернуть изображение: в) обернуть лучи. 49

50

Рис.9.3 Такие призмы применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя i пр, определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен. 51

Явление полного отражения используется также в световодах представляющих собой тонкий, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала. В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углами, большими предельного, претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле. 52

53 В волоконно - оптических деталях световые сигналы передаются по светопроводам с одной поверхности (торца светопровода) на другую (выходную), как совокупность элементов изображения, каждый из которых передается по своей светопроводящей жиле. В волоконных деталях обычно применяют стеклянное волокно, световедущая жила которого (сердцевина) имеет высокий показатель преломления и окружена стеклом (оболочкой) с более низким показателем преломления. Вследствие этого на поверхности раздела сердцевины и оболочки лучи претерпевают полное внутреннее отражение и распространяются только по световедущей жиле. Коэффициент пропускания светопроводов в видимой области спектра составляет % при длине 1 м.

Таким образом, с помощью световодов можно как угодно искривлять путь светового пучка. За счет многократного полного отражения свет может быть направлен по любому прямому или изогнутому пути Диаметр световедущих жил лежит в пределах от нескольких микрометров до нескольких миллиметров. Для передачи изображений, как правило, применяются многожильные световоды. Этот телефонный провод содержит 144 оптические нити 54

Вопросы передачи световых волн и изображений изучаются в специальном разделе оптики волоконной оптике, возникшей в 50-е годы XX столетия. Световоды используются при создании телеграфно-телефонных кабелей большой емкости. Кабель состоит из сотен и тысяч оптических волокон, тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров. Световоды используются так же в электронно- лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики 55

7.3 Развитие взглядов на природу света Основные законы геометрической оптики известны ещё с древних времен. Но ни Платон ни Евклид ни Аристотель и Птолемей не смогли дать точных формулировок этих законов. 56 Архиме́д ( ρχιμήδης; 287 до н. э. 212 до н. э.) древнегреческий математик, физик, механик и инженер из Сиракуз. Сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда важных изобретений

59 В конце XVII века, на основе многовекового опыта и развития представлений о свете возникли две мощные теории света – корпускулярная (Ньютон-Декарт) и волновая (Гук-Гюйгенс).

постоянная равная отношению скорости света в среде Из представлений корпускулярной теории Ньютон легко вывел законы отражения и преломления: ; (угол падения равен углу отражения); (отношение синуса угла падения к синусу угла преломления – величина к скорости света в вакууме с). Рисунок 7.1 Рисунок 7.2 Таким образом, Ньютон ошибочно утверждал, что скорость света в веществе больше скорости света в вакууме. 60

Исаак Ньютон (Isaac Newton)Родился 4 января 1643 Вулсторп (Woolsthorpe) Англия Умер 31 марта 1727 Лондон (London) Англия физик, математик, астроном, алхимик и философ Важнейшие работы закон всемирного тяготения дифференциальное и интегральное исчисления изобрел зеркальный телескоп закон всемирного тяготения дифференциальное и интегральное исчисления изобрел зеркальный телескоп развил корпускулярную теорию света 61

62

63

64 нидерландский механик, физик и математик Гаага, Нидерланды (Hague, Netherlands) Христиан Гюйгенс Christiaan Huygens –

65 французский физик Броли, Франция (Broglie, France) Ville-d'Avray, France Огюстен Жан Френель Augustin Jean Fresnel –

Фраунгофер Йозеф (6.III VI.1826) - немецкий физик. С 1823 года - профессор Мюнхенского университета. Научные работы относятся к физической оптике. Внёс существенный вклад в исследование дисперсии и созданиефизической оптикедисперсии ахроматических линз. Фраунгофер изучал дифракцию в параллельных лучах (так называемая дифракция Фраунгофера) сначала от одной щели, а потом от многих. Большой заслугой учёного является использование(с 1821 года) дифракционных решеток для исследования спектров (некоторые исследователи считают его даже изобретателем первой дифракционной решетки). дифракционных решетокспектров 66

Араго Доминик Франсуа (26.II X.1853) - французский учёный, член Парижской академии наук (с 1809 года), с 1830 года - непременный секретарь Парижской АН и директор Парижской обсерватории. Научные работы относятся к Парижской академии наук астрономии, физике, математике, метеорологии. Автор многих открытий в области оптики и электромагнетизма. По указаниям Араго французские физики И. Физо и Ж. Фуко экспериментально измерили скорость света, а французский астроном У. Леверье теоретически, "на кончике пера", открыл планету Нептун. Араго с 1829 года член Петербургской академии наук.Физо ФукоЛеверьепланету Нептун Петербургской академии наук 67

Пуассон Симеон Дени (21.VI IV.1840) - французский механик, математик, физик, член Парижской академии наук (с 1812 года). Физические Парижской академии наук исследования относятся к магнетизму, капиллярности, теории упругости, гидромеханике, теории колебаний, теории света. Член Петербургской академии наук (с 1826 года).теории упругостигидромеханике теории колебаний Петербургской академии наук 68

Максвелл Джеймс Клерк (13.VI XI.1879) - английский физик, член Эдинбургского королевского общества (с 1855 года) и Лондонского королевского общества (с 1861 года). Под руководством Максвелла создана известная Кавендишская Лондонского королевского общества Кавендишская лабораториялаборатория в Кембридже, которую он и возглавлял до конца жизни. Научные труды посвящены электродинамике, молекулярной физике, общей статистике, оптике, механике, теории упругости. Самым большим достижением Максвелла является созданная им в годах теория электромагнитного поля, которую он сформулировал в виде системы нескольких уравнений, выражающих все основные закономерности электромагнитных явлений. электродинамикемолекулярной физикеобщей статистикеоптикемеханикетеории упругоститеория электромагнитного поля уравнений 69

70 Томас Юнг, , ан. физик

Начало XIX в. характеризуется интенсивным развитием математической теории колебаний и волн и ее приложением к объяснению ряда оптических явлений. В связи с работами Т. Юнга и О. Френеля, победа временно перешла к волновой оптике: 1801 г. Т. Юнг сформулировал принцип интерференции и объяснил цвета таких пленок; 1818 г. О. Френель получает премию Парижской Академии за объяснение дифракции; 1840 г. О. Френель и Д. Арго исследуют интерференцию поляризованного света и доказывают поперечность световых колебаний; 71

1841 г. О. Френель строит теорию кристаллооптических колебаний; 1849 г. А. Физо измерил скорость света и рассчитал по волновой теории коэффициент преломления воды, что совпало с экспериментом; 1848 г. М. Фарадей открыл вращение плоскости поляризации света в магнитном поле (эффект Фарадея); 1860 г. Дж. Максвелл основываясь на открытии Фарадея пришел к выводу, что свет есть электромагнитные, а не упругие волны; 72

1900 г. Макс Планк показал, что излучение абсолютно черного тела можно объяснить, если предложить, что свет излучается не непрерывно, а порциями, квантами с энергией ν – частота, h – постоянная Планка., где 1888 г. Г. Герц экспериментально исследовал электромагнитное поле и подтвердил, что электромагнитные волны распространяются со скоростью света с = 3*10 8 м/с 1899 г. П.Н. Лебедев измерил давление света. 73

Макс Планк (1858 – 1947). С 1874 г. он изучал физику у Густава Кирхгофа и Германа Гельмгольца в Мюнхенском университете. В 1930 г. Макс Планк возглавил Институт физики кайзера Вильгельма (теперь Институт Макса Планка) и занимал этот пост до конца жизни. В 1900 г. в работе, посвященной равновесному тепловому излучению, Планк впервые ввел предположение о том, что энергия осциллятора принимает дискретные значения, пропорциональные частоте колебаний, чем положил начало квантовой физики. Также Макс Планк внес большой вклад в развитие термодинамики. 74

Планка постоянная h6,626·10 34 Дж·c.

В 1905 г. Альберт Эйнштейн объяснил закономерности фотоэффекта на основе представления о световых частицах – «квантах» света, «фотонах», масса которых Это соотношение связывает корпускулярные характеристики излучения – массу и энергию кванта – с волновыми – частотой и длиной волны. Работы Планка и Эйнштейна явились началом развития квантовой физики. 76

7.4 Корпускулярно – волновой дуализм Волновая оптика позволяет объяснить все эмпирические законы геометрической оптики и установить границы ее применимости. Хорошо описывая распространение света в материальных средах, волновая оптика не смогла удовлетворительно объяснить процессы его испускания и поглощения. 78

Исследование этих процессов привели к выводу, что элементарная система (атом, молекула) может испускать или поглощать энергию электромагнитного поля лишь дискретными порциями (квантами), пропорциональными частоте излучения. Поэтому световому электромагнитному полю сопоставляется поток квантов света – фотонов, распространяющихся в вакууме со скоростью света. 79

Двойственность природы света – наличие у него одновременно характерных черт, присущих и волнам, и частицам, – является частным случаем корпускулярно-волнового дуализма. Эта концепция была впервые сформулирована именно для оптического излучения; она утвердилась как универсальная для всех частиц микромира после обнаружения волновых свойств у материальных частиц (дифракция частиц). 80

В физической оптике сформировалось новое направление, связанное с генерированием вынужденного излучения и созданием квантовых усилителей и квантовых генераторов излучения (мазеров и лазеров). Излучение лазеров обладает большой временной и пространственной когерентностью, высокой монохроматичностью, предельно малой расходимостью пучка и при фокусировке позволяет получать недостижимые ни для каких других источников напряженности электрического поля. 81

Экспериментальное обнаружение методов генерации вынужденного излучения атомов и молекул – создание оптического квантового генератора (лазера) - наиболее важное событие в современной оптике (А.М. Прохоров, Н.Г. Басов и Ч. Таунс 1954 г.). 82

83 Оптический квантовый генератор (лазер)

В современной физической оптике квантовые представления не противоречат волновым, а сочетаются на основе квантовой механики и квантовой электродинамики. 84

7.5 Основные характеристики световых волн Корпускулярно-волновой дуализм: свет в некоторых явлениях обладает свойствами, присущими частицам (корпускулярная теория), в других явлениях свойствами, присущими волнам (волновая теория). В данном разделе будем рассматривать свет как электромагнитные волны. 85

86 Световые волны: Плоская волна: Сферическая волна: - вектор напряженности электрического поля; Е 0 – амплитуда; r – расстояние до источника ; k – волновое число; φ – начальная фаза. Световой вектор - вектор напряженности электрического поля. Его колебаниями обусловлено физиологическое, фотохимическое и т.д. действие света.

87 Отношение скорости световой волны в вакууме к фазовой скорости в некоторой среде называется абсолютным показателем преломления среды: Поскольку Получаем Значение n определяет оптическую плотность среды: оптически более плотная среда – среда с бóльшим n; оптически менее плотная среда – среда с меньшим n. - для большинства прозрачных сред (μ 1)

88 С П Е К Т Р spectrum (лат.) - вúдение.

89 Видимый свет (в вакууме): λ = [400 (фиолетовый); 760 нм (красный)] Шкала электромагнитных волн

90

91 Согласно теории цветового зрения Юнга - Гельмгольца ощущение любого цвета можно получить смешиванием спектрально чистых излучений красного, зеленого и синего цветов

92 максимальная чувствительность глаза при дневном свете – на длине волны 555 нм, при сумеречном свете - на длине волны 510 нм. Кривая видности - относительная спектральная чувствительность глаза к излучениям различных длин волн

93 Спектр оптического пропускания синтетического кварцевого стекла Suprasil 300, оптического стекла BK 7 и обычного стекла. (кварцевое стекло вследствие малого количества примесей обладает чрезвычайно широким спектром пропускания и малым поглощением света (обычное оконное стекло поглощает столько же света, сколько и кварцевое стекло толщиной в 100 метров)).

94 Интенсивность света – модуль среднего по времени значения плотности потока энергии, переносимой световой волной: – вектор Пойнтинга В случае однородной среды (n = const) интенсивность пропорциональна квадрату амплитуды световой волны

95 Луч – линия, вдоль которой распространяется световая волна. В изотропных средах лучи перпендикулярны к волновым поверхностям В анизотропных средах лучи не ортогональны волновым поверхностям

96 В естественном свете колебания светового вектора совершаются во всех направлениях, перпендикулярных к лучу. Излучение тела обусловлено волнами, испускаемыми его атомами: длительность излучения атома ~ 10 –8 с, за это время образуется цуг волн (набор горбов и впадин) длиной ~ 3 м. Плоскость колебаний каждого цуга ориентирована случайным образом. В результирующей волне (суперпозиции цугов от разных атомов) все направления равновероятны.

Световые, или фотометрические величины Энергия, переносимая световыми лучами в единицу времени, называется потоком энергии (лучистым потоком), проходящим через площадку dS в телесный угол dΩ. Если нормаль к площадке dS образует с направлением излучения угол α, то необходимо рассматривать ее проекцию – видимую величину площадки, если ее рассматривать под углом α к нормали:

98 Силой света источника I в заданном направлении называется световой поток, посылаемый им в этом направлении и отнесенный к единице телесного угла. Единицы измерения: [I] = кд (кандела) Световой поток для точечного источника 1 люмен – это световой поток, посылаемый источником с силой света в 1 канделу внутрь телесного угла в 1 стерадиан: 1 лм = 1 кд · 1 ср

99 Освещенностью Е некоторой поверхности называется световой поток, падающий на единицу площади освещаемой поверхности: [E] = лк (люкс): Для точечного источника - освещенность, создаваемая точечным источником, обратно пропорциональна квадрату расстояния до него и прямо пропорциональна косинусу угла между направлением падающих лучей и нормалью к освещаемой поверхности. - закон обратных квадратов:

100 Для протяженных источников вводятся следующие понятия: Яркостью L называется световой поток, исходящий из площадки dS в заданном направлении, отнесенный к единице телесного угла и к единице ее видимой величины: Источники, яркость которых одинакова по всем направлениям, называются ламбертовскими (косинусными): dI ~ cos α где - сила света площадки dS в том же направлении

101 Светимостью М называется полный световой поток, посылаемый единицей светящейся поверхности в одну сторону (в телесный угол Ω = 2π): Световой поток с единицы поверхности в телесный угол dΩ равен Тогда Для ламбертовских источников (L = const):

102