В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 точка M – середина ребра B 1 C 1, AB = 3, BC = 4, BB 1 = 2. Найдите угол между плоскостями BMD и ABC.

Презентация:



Advertisements
Похожие презентации
С B 1 L является наклонной к плоскости ABC. D A D1D1D1D1 C1C1C1C1 В B1B1B1B1 2 н-я п-р A1A1A1A1 3 2 NF 1) Построим линейный угол двугранного угла B 1 NAB.
Advertisements

12 5 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 известны ребра AB = 5, АD = 12, CC 1 = 15. Найдите угол между плоскостями ABC и A 1 DB. D AN является.
С А В В 1 В 1 А 1 А 1 С 1 С 1 Основание прямой призмы ABCA 1 B 1 C 1 – треугольник АВС, площадь которого равна 12, АВ = 5. Боковое ребро призмы равно 36.
D В C1C1C1C1 D1D1D1D1 А A1A1A1A1 1 н-я 2 В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 АВ = 2, AD = AA 1 = 1. Найдите угол между прямой АВ 1 и плоскостью.
B A D C C1C1C1C1 A1A1A1A1 D1D1D1D1 F 1). Построим сечение призмы плоскостью D 1 MK M B1B1B1B1 K8 2). MK, т.к. точки M и K лежат в одной плоскости.
П-я 4 В А С1С1 В1В1 Основанием прямой призмы ABCA 1 B 1 C 1 является равнобедренный треугольник АВС, в котором СВ=СА=5, ВА=6. Высота призмы равна 24. Точка.
EF А 1 F, D А В С А 1 А 1 D1D1 С 1 С 1 В 1 В Угол между прямой EF и плоскостью АВС равен углу между EF и плоскостью А 1 В 1 С 1, т.к. эти плоскости.
Тогда, ВАВ 1 – линейный угол двугранного угла D 1 AECA F E D C F1F1F1F1 E1E1E1E1 C1C1C1C1 1 B1B1B1B1 В правильной шестиугольной призме АВСDEFA 1 B 1 C.
8 C D A B D1D1 C1C1 B1B1 A1A1 6 8 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. наклонная В прямоугольном.
Тема: Угол между прямой и плоскостью Тема: Угол между прямой и плоскостью. Урок 2 «Решаем С2 ЕГЭ» Разработала: Куракова Е. В., учитель математики МБОУ.
Две пересекающиеся плоскости образуют две пары равных между собой двугранных углов. Величиной угла между плоскостями называется величина меньшего двугранного.
В основании прямой призмы АВСА 1 В 1 С 1 лежит прямоугольный треугольник АВС с прямым углом С, катет АС в два раза больше катета ВС. Известно, что плоскость.
D1BD1BD1BD1B 2. Нормаль ко второй плоскости, которую я и строить не берусь… Но по условию это сечение проходит перпендикулярно прямой BD 1. Значит, ВD.
Гранью параллелепипеда является ромб со стороной 1 и острым углом Одно из ребер параллелепипеда составляет с этой гранью угол в 60 0 и равно 2. Найдите.
Девиз урока: « Дорогу осилит идущий, а математику – мыслящий.» « Три качества: обширные знания, привычка мыслить и благородство чувств – необходимы для.
Угол между плоскостями. В прямоугольном параллелепипеде ABCD A 1 B 1 C 1 D 1, где AB=5,AD=12, CC 1 =15. Найдите угол между плоскостями ABC и A 1 DB. Решение.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
D1BD1BD1BD1B 2. Нормаль ко второй плоскости, которую я и строить не берусь… Но по условию это сечение проходит перпендикулярно прямой BD 1. Значит, ВD.
1. 1. В правильной шестиугольной призме АВСDEFA 1 B 1 C 1 D 1 E 1 F 1, все ребра которой равны 1, найдите расстояние от точки С до прямой F 1 E 1. B C.
8 D A B C A1A1 D1D1 C1C1 6 Угол между наклонной и плоскостью – это угол между наклонной и её проекцией на эту плоскость. В прямоугольном параллелепипеде.
Транксрипт:

В прямоугольном параллелепипеде ABCDA 1 B 1 C 1 D 1 точка M – середина ребра B 1 C 1, AB = 3, BC = 4, BB 1 = 2. Найдите угол между плоскостями BMD и ABC. D ML является наклонной к плоскости ABC. A B A1A1A1A1 D1D1D1D1 C C1C1C1C1 3 н-я п-р B1B1B1B1 4 2 M 1) Построим линейный угол двугранного угла MBDC (BD – ребро двугранного угла) 2) ML BD, MK – перпендикуляр к плоскости ABC KL – проекция отрезка ML на плоскость ABC. Применим теорему о трех перпендикулярах. ML BD н-я Т Т П KL BD п-я п-я MLK – линейный угол двугранного угла MBDC Чтобы найти угол прямоугольного треугольника надо знать две его стороны. Известно, что MK = 2. Найдем KL. F L K п-я

B C AD3 4 D A B A1A1A1A1 D1D1D1D1 C C1C1C1C1 3 B1B1B1B1 4 2 M F L K L2 K 5 Треугольники BDC и BKL подобны по двум углам Мы знаем катеты треугольника KML, значит, вычислим отношение тангенс: отношение противолежащего катета к прилежащему катету.