Disjoint Sets Data Structure (Chap. 21) A disjoint-set is a collection ={S 1, S 2,…, S k } of distinct dynamic sets. Each set is identified by a member.

Презентация:



Advertisements
Похожие презентации
AVL-Trees COMP171 Fall AVL Trees / Slide 2 Balanced binary tree * The disadvantage of a binary search tree is that its height can be as large as.
Advertisements

SPLAY TREE The basic idea of the splay tree is that every time a node is accessed, it is pushed to the root by a series of tree rotations. This series.
HPC Pipelining Parallelism is achieved by starting to execute one instruction before the previous one is finished. The simplest kind overlaps the execution.
Here are multiplication tables written in a code. The tables are not in the correct order. Find the digit, represented by each letter.
The problem of String Matching Given a string S, the problem of string matching deals with finding whether a pattern p occurs in S and if p does occur.
Sequences Sequences are patterns. Each pattern or number in a sequence is called a term. The number at the start is called the first term. The term-to-term.
Michael Marchenko. In mathematics, a sequence is an ordered list of objects (or events). Like a set, it contains members (also called elements, or terms),
In mathematics, the notion of permutation is used with several slightly different meanings, all related to the act of permuting (rearranging) objects.
1/27 Chapter 9: Template Functions And Template Classes.
11 BASIC DRESS-UP FEATURES. LESSON II : DRESS UP FEATURES 12.
© The McGraw-Hill Companies, Inc., Chapter 4 Counting Techniques.
Multiples Michael Marchenko. Definition In mathematics, a multiple is the product of any quantity and an integer. in other words, for the quantities a.
Unit II Constructor Cont… Destructor Default constructor.
Time-Series Analysis and Forecasting – Part IV To read at home.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v Customer-to-Provider Connectivity with BGP Connecting a Multihomed Customer to Multiple Service.
AVL Trees CSE 373 Data Structures Lecture 8. 12/26/03AVL Trees - Lecture 82 Readings Reading Section 4.4,
Tool: Pareto Charts. The Pareto Principle This is also known as the "80/20 Rule". The rule states that about 80% of the problems are created by 20% of.
Minimum spanning trees. Minimum Connector Algorithms Kruskals algorithm 1.Select the shortest edge in a network 2.Select the next shortest edge which.
© 2006 Cisco Systems, Inc. All rights reserved.BCMSN v Defining VLANs Correcting Common VLAN Configuration Errors.
Time-Series Analysis and Forecasting – Part II Lecture on the 5 th of October.
Транксрипт:

Disjoint Sets Data Structure (Chap. 21) A disjoint-set is a collection ={S 1, S 2,…, S k } of distinct dynamic sets. Each set is identified by a member of the set, called representative. Disjoint set operations: –MAKE-SET(x): create a new set with only x. assume x is not already in some other set. –UNION(x,y): combine the two sets containing x and y into one new set. A new representative is selected. –FIND-SET(x): return the representative of the set containing x.

Multiple Operations Suppose multiple operations: –n: #MAKE-SET operations (executed at beginning). –m: #MAKE-SET, UNION, FIND-SET operations. –m n, #UNION operation is at most n-1.

An Application of Disjoint-Set Determine the connected components of an undirected graph. CONNECTED-COMPONENTS(G) 1.for each vertex v V[G] 2. do MAKE-SET(v) 3.for each edge (u,v) E[G] 4. do if FIND-SET(u) FIND-SET(v) 5. then UNION(u,v) SAME-COMPONENT(u,v) 1.if FIND-SET(u)=FIND-SET(v) 2. then return TRUE 3. else return FALSE

Linked-List Implementation Each set as a linked-list, with head and tail, and each node contains value, next node pointer and back-to-representative pointer. Example: MAKE-SET costs O(1): just create a single element list. FIND-SET costs O(1): just return back-to- representative pointer.

Linked-lists for two sets head tail che f g head tail f c g head Set {c,h,e} Set {f, g} UNION of two Sets h e

UNION Implementation A simple implementation: UNION(x,y) just appends x to the end of y, updates all back-to-representative pointers in x to the head of y. Each UNION takes time linear in the xs length. Suppose n MAKE-SET(x i ) operations (O(1) each) followed by n-1 UNION – UNION(x 1, x 2 ), O(1), –UNION(x 2, x 3 ), O(2), –….. –UNION(x n-1, x n ), O(n-1) The UNIONs cost 1+2+…+n-1= (n 2 ) So 2n-1 operations cost (n 2 ), average (n) each. Not good!! How to solve it ???

Weighted-Union Heuristic Instead appending x to y, appending the shorter list to the longer list. Associated a length with each list, which indicates how many elements in the list. Result: a sequence of m MAKE-SET, UNION, FIND-SET operations, n of which are MAKE-SET operations, the running time is O(m+nlg n). Why??? Hints: Count the number of updates to back-to-representative pointer for any x in a set of n elements. Consider that each time, the UNION will at least double the length of united set, it will take at most lg n UNIONS to unite n elements. So each xs back-to-representative pointer can be updated at most lg n times.

Disjoint-set Implementation: Forests Rooted trees, each tree is a set, root is the representative. Each node points to its parent. Root points to itself. cf he cc cf d d he cc Set {c,h,e}Set {f,d} UNION

Straightforward Solution Three operations –MAKE-SET(x): create a tree containing x. O(1) –FIND-SET(x): follow the chain of parent pointers until to the root. O(height of xs tree) –UNION(x,y): let the root of one tree point to the root of the other. O(1) It is possible that n-1 UNIONs results in a tree of height n-1. (just a linear chain of n nodes). So n FIND-SET operations will cost O(n 2 ).

Union by Rank & Path Compression Union by Rank: Each node is associated with a rank, which is the upper bound on the height of the node (i.e., the height of subtree rooted at the node), then when UNION, let the root with smaller rank point to the root with larger rank. Path Compression: used in FIND-SET(x) operation, make each node in the path from x to the root directly point to the root. Thus reduce the tree height.

Path Compression f e d c f edc

Algorithm for Disjoint-Set Forest MAKE-SET(x) 1.p[x] x 2.rank[x] 0 LINK(x,y) 1.if rank[x]>rank[y] 2.then p[y] x 3.else p[x] y 4. if rank[x]=rank[y] 5. then rank[y]++ FIND-SET(x) 1.if x p[x] 2. then p[x] FIND-SET( p [x]) 3.return p[x] Worst case running time for m MAKE-SET, UNION, FIND-SET operations is: O(m (n)) where (n) 4. So nearly linear in m. UNION(x,y) 1. LINK(FIND-SET(x),FIND-SET(y))

Analysis of Union by Rank with Path Compression (by amortized analysis) Discuss the following: –A very quickly growing function and its very slowly growing inverse –Properties of Ranks –Proving time bound of O(m (n)) where (n) is a very slowly growing function.

A very quickly growing function and its inverse For integers k 0 and j 1, define A k (j): –A k (j)= j+1 if k=0 – A k-1 (j+1) (j) if k 1 –Where A k-1 0 (j)=j, A k-1 (i) (j)= A k-1 (A k-1 (i-1) (j)) for i 1. –k is called the level of the function and –i in the above is called iterations. A k (j) strictly increase with both j and k. Let us see how quick the increase is!!

Quickness of Function A k (j)s Increase Lemma 21.2 (Page 510): –For any integer j, A 1 (j) =2j+1. –Proof: By induction on i, prove A 0 i (j) =j+i. So A 1 (j)= A 0 (j+1) (j) =j+(j+1)=2j+1. Lemma 21.3 (Page 510): –For any integer j, A 2 (j) =2 j+1 (j+1)-1. –Proof: By induction on i, prove A 1 i (j) =2 i (j+1)-1 A 2 (j)= A 1 (j+1) (j) = 2 j+1 (j+1)-1.

How Quick A k (j) Increase Let us see A k (1): for k=0,1,2,3,4. –A 0 (1)=1+1=2 –A 1 (1)=2.1+1=3 –A 2 (1)=2 1+1 (1+1)-1=7 –A 3 (1)=A 2 (1+1) (1)=A 2 (2) (1)=A 2 (A 2 (1))=A 2 (7)=2 7+1 (7+1)- 1= =2047 –A 4 (1)=A 3 2 (1)=A 3 (A 3 (1)) =A 3 (2047)=A 2 (2048) (2047) >> A 2 (2047) = > =(2 4 ) 512 =(16) 512 –>> (estimated number of atoms in universe)

Inverse of A k (n): (n) (n)=min{k: A k (1) n} (so, A (n) (1) n ) (n)= 0 for 0 n 2 1 n =3 2 for 4 n 7 3 for 8 n for 2048 n A 4 (1). Extremely slow increasing function. (n) 4 for all practical purposes.

O(m (n)) bound: Property of Ranks Lemma 21.4 (page 511): –For all nodes x, rank[x] rank[p[x]], with strict inequality if x p[x]. Corollary 21.5 (page 511): –As we follow the path from any node to the root, the node ranks strictly increase. Lemma 21.6 (page 512): –Every node had rank at most n-1. Proof: rank begins with 0, increase possibly with only LINK operations, which is at most n-1 time. In fact, at most log(n).

O(m (n)) bound proof Using amortized analysis (Chap. 17) Using LINK instead UNION (every UNION is done by two FIND-SETs and one LINK) Lemma 21.7 (page 512): –Suppose converting a sequence S' of m' MAKE-SET, UNION, and FIND-SET operations into a sequence S of m MAKE-SET, LINK, FIND-SET by turning UNION to two FIND-SETs and one LINK, then if S runs in O(m (n)), then S' runs in O(m' (n)). –Proof: because of m' m 3m', thus m=O(m').

Potential Function For each node x, assign a potential function q (x) after q operations. Then potential for entire forest, q = x q (x) – 0 =0 at the beginning. – q will never be negative. q (x)= (n) rank[x] if x is a root or rank[x]=0. (n)-level(x) rank[x]-iter(x) otherwise.

level(x) and iter(x) level(x)=max{k: rank[p[x]] A k (rank[x])} –0 Level(x)< (n), since rank[p[x]] rank[x]+1=A 0 (rank[x]) and A (n) (rank[x]) A (n) (1) n > rank[p[x]]. iter(x)=max{i: rank[p[x]] A level(x) (i) (rank[x])} –1 iter(x) rank[x], since rank[p[x]] A level(x) (rank[x])=A level(x) (1) (rank[x]) and A level(x) (rank[x]+1) (rank[x])=A level(x)+1 (rank[x])>rank[p[x]].

Relations among rank[p[x]], level(x) and iter(x) Since rank[p[x]] monotonically increase over time, in order for iter(x) to decrease, level(x) must increase. Or say another way, as long as level(x) remains unchanged, iter(x) must either increase or remains unchanged.

Properties for Potential Function q (x) Lemma 21.8 (page 514): –For every node x, and for all q, 0 q (x) (n) rank[x] Proof: –if x is a root or rank[x]=0, then correct by definition. –Suppose x is not a root and rank[x]>0, q (x)= [ (n)-level(x)] rank[x]-iter(x) ( (n)-( (n)-1)) rank[x]-rank[x] =rank[x]-rank[x]=0. q (x)= [ (n)-level(x)] rank[x]-iter(x) [ (n)-0] rank[x]-1= (n) rank[x]-1< (n) rank[x]

Potential Changes of Operations Lemma 21.9 (page 515): –Let x be a node that is not a root, and suppose qth operation is either LINK or FIND-SET. Then after the qth operation, q (x) q-1 (x). Moreover, if rank[x] 1 and either level[x] or iter(x) changes due to the qth operation, then q (x) q-1 (x)-1. Proof: –x not root rank[x] not change –n not change (n) not change. –If rank[x]=0, then q (x) = q-1 (x)=0. suppose rank[x]>0. –If level(x) not change, If iter(x) not change, q (x) = q-1 (x), since all keep same If iter(x) increase, then at lease by 1, q (x) will decrease at least 1. –If level(x) increases (at least by 1), then ( (n)-level(x)) rank[x] drops at least by rank[x]. Suppose iter(x) drops, then, the drop is at most rank[x]-1. so q (x) will drop at least rank[x]-(rank[x]-1)=1. Thus q (x) q-1 (x)-1.

Amortized Costs of Operations Lemma (page 515): –The amortized cost of each MAKE-SET operation is O(1). Proof: create a single node x with rank 0, so q (x) =0. no other change to the forest, so q= q-1. The left is the actual cost, which is O(1).

Amortized Costs of Operations (cont.) Lemma (page 515): –The amortized cost of each LINK operation is O( (n)). Proof: (LINK(x,y) makes y the parent of x). –Actual cost for LINK operation is O(1). –Considering potential change: Three kinds of nodes: x, y, and the old children of y. By Lemma 21.9, the potential of ys old children not increase. For x (changed to non-root from a root), q (x)= [ (n)-level(x)] rank[x]- iter(x) [ (n)-0] rank[x]-1= (n) rank[x]-1< (n) rank[x]= q-1 (x). For y, rank[y] may stay same or increase by 1, so q (y)= (n) rank[y]= q- 1 (y) or q-1 (y)+ (n). Thus the potential increase due to the LINK operation is at most (n). –Thus the amortized cost is O(1)+O( (n))=O( (n))

Amortized Costs of Operations (cont.) Lemma (page 516): –The amortized cost of each FIND-SET operation is O( (n)). Proof: suppose there are s nodes in the find path. –The actual cost of FIND-SET is O(s). –Roots potential does not change and no other nodes potential increases (by Lemma 21.9). –At least max(0,s-( (n)+2)) nodes on the find path have their potential decrease by at least 1. –Thus the amortized cost is at most O(s)-(s-( (n)+2)) =O( (n)).

Proof of Lemma (cont.) Proof that at lease max(0,s-( (n)+2)) nodes on the find path have their potential decrease by at least 1. –Let x be a node on the find path: rank[x]>0, followed somewhere by y that is not a root, and level(y)=level(x) just before FIND-SET. –At most (n)+2 nodes do not satisfy: 1th node, root node, the last node w for which level(w)=0,1,…, (n)-1. –Thus at least max(0,s-( (n)+2)) nodes satisfy. –Let us fix x, show xs potential decreases by at least 1.

Proof of Lemma (cont.) Let k=level(x)=level(y), Just prior to path compression caused by FIND-SET, we have –rank[p[x]] A k (iter(x)) (rank[x]) (by iter(x)s def.) –rank[p[y]] A k (rank[y]) (by level(y)s def.) –rank[y] rank[p[x]] (since y follows x somewhere). Let i=iter(x) before path compression, we have –rank[p[y]] A k (rank[y]) A k (rank[p[x]]) (since A k (j) is strictly increasing) A k (A k (iter(x)) (rank[x])) =A k (i+1) (rank[x]) After path compression, rank[p[x]]=rank[p[y]], which not decrease, and rank[x] not change, so rank[p[x]] A k (i+1) (rank[x]). –Which means that either iter(x) increases (to at least i+1), or level(x) to increase. Thus by Lemma 21.9, q (x) q-1 (x)-1. that is xs potential decreases by at least 1. As a result, we prove the lemma

Upper bound for Disjoint-sets Theorem (page 517): –A sequence of m MAKE-SET, UNION, FIND- SET operations, n of which are MAKE-SET operations, can be performed on a disjoint-set forest with union by rank and path compression in worst cast time O(m (n)).

Summary Disjoint set –Three operations –Different implementations and different costs Forest implementation: –Union by rank and path compression –Properties: rank, level, iter. –Amortized analysis of the operations: Potential function. A k (j) funcion: –A k (j)= j+1 if k=0 – A k-1 (j+1) (j) if k 1 –Where A k-1 0 (j)=j, A k-1 (i) (j)= A k-1 (A k-1 (i-1) (j)) for i 1. –k is called the level of the function and –i in the above is called iterations. (n)=min{k: A k (1) n}

A typical example using Disjoint Set Kruskal's algorithm (Minimum Spanning Tree) –sort the edges of G in increasing order by length – keep a subgraph S of G, initially empty –for each edge e in sorted order if the endpoints of e are disconnected in S –add e to S –return S Note: greedy algorithm Analysis: The testing whether two endpoints are disconnected –looks like it should be slow (linear time per iteration, or O(mn) total). –in fact, constant time.