Плазма Что такое плазма Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных атомов.

Презентация:



Advertisements
Похожие презентации
Плазма ИОНИЗИРОВАННЫЙ ГАЗ МГОЛ 1. Плазма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных.
Advertisements

Плазма и ее свойства. Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных атомов.
АГРЕГАТНЫЕ СОСТОЯНИЯ ВЕЩЕСТВА (от лат. aggrego присоединяю, связываю) вода при норм. давлении р= Па=760 мм рт. ст. при T=0°C кристаллизуется в лёд,
Ч ТО ТАКОЕ ПЛАЗМА ? З НАЧЕНИЕ. П РИМЕНЕНИЕ. Работу выполнили ученицы 10 класса Зубарева А., Терехова А. Учитель: Вахонина О.А.
Исследования в области физики плазмы и термоядерного синтеза Полтарыхина А. У04-01.
Электрический ток в плазме. - это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости.
Агрегатные состояния вещества. Плавление и отвердевание кристаллических тел Урок физики.8 класс.
Лекция 1. Плазма – коллективное состояние заряженных частиц ионизованного газа. Пространственные и временные масштабы разделения зарядов в плазме. Идеальная.
Презентация на тему: «Агрегатные состояния вещества» Ученика 7»А» класса ГОУ ЦО 1428 Города Москвы.
Агрегатные состояния вещества. Работу выполнили: ученицы 8 «А» класса Лицея 10 г.Перми Качкина Ирина и Бородкина Лена.
Основные положения МКТ Качественный и количественный анализ.
АГРЕГАТНЫЕ СОСТОЯНИЯ ВЕЩЕСТВА УРОК ФИЗИКИ В 10 КЛАССЕ.
Агрегатные состояния и кристаллические решетки. СВОЙСТВА: способность (твёрдое тело) или неспособность (жидкость, газ, плазма) сохранять объём и форму.
Агрегатные состояния вещества. Все вещества могут находиться в трёх состояниях (это зависит от температуры и давления): твёрдое жидкое газообразное.
Выполнил: учиетль физики высшей квалификационной категории Н.А. Бургу Презентация на тему Строение газообразных, жидких и твёрдых тел 10 класс.
Плазма Кудряшов Макс Георгий Франк. Определение Пла́зма в физике и химии полностью или частично ионизированный газ. Плазма иногда называется четвёртым.
Физика плазмы космического пространства Елизавета Евгеньевна Антонова.
Окружающий мир. 4 класс. Земля, на которой мы живем – частица безграничной Вселенной (Космоса). Изучение Земли невозможно без рассмотрения ее положения.
Транксрипт:

Плазима

Что такое плазима Пла́зима (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных атомов (или молекул) и заряженных частиц (ионов и электронов). Важнейшей особенностью плазмы является ее квазинейтральность, это означает, что объемные плотности положительных и отрицательных заряженных частиц, из которых она образована, оказываются почти одинаковыми. Плазима иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества. Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере один электрон. Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями. Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году.

Формы плазмы По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазима.[2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «не плазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём и того меньше: всего 1015 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазима, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазима).

Свойства и параметры плазмы Определение плазмы Плазима частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы.[4] Не всякую систему заряженных частиц можно назвать плазмой. Плазима обладает следующими свойствами:[5][6][7] Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления типичное свойство плазмы). Математически это условие можно выразить так:, где концентрация заряженных частиц. Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания.[8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид.

Классификация Плазима обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазима бывает неравновесной, а горячая равновесной. Температура 17:33:03 Плазму делят на низкотемпературную (температура меньше миллиона K) и высокотемпературную (температура миллион K и выше). Такое деление обусловлено важностью высокотемпературной плазмы в проблеме осуществления управляемого термоядерного синтеза. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние[9]. В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K. В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазима обычно является горячей (с температурой больше нескольких тысяч K).