МОЛЕКУЛЯРНО- КИНЕТИЧЕСКАЯ ТЕОРИЯ (МКТ). Молекулярно-кинетическая теория (МКТ) занимается изучением свойств веществ, основываясь при этом на представлениях.

Презентация:



Advertisements
Похожие презентации
Основы мкт Молекулярно-кинетическая теория Масса и размеры молекул Количество вещества Строение газов, жидкостей и твердых тел Идеальный газ Среднее значение.
Advertisements

Молекулярная физика. Основы мкт Молекулярно-кинетическая теория Масса и размеры молекул Количество вещества Строение газов, жидкостей и твердых тел Идеальный.
Лекция 7 Молекулярная физика и термодинамика. Тепловое равновесие. Температура. Молекулярная физика и термодинамика изучают свойства и поведение макроскопических.
Газы и их свойства. Что же такое газы? Что же такое газы? Что бы ответить на этот вопрос, надо Что бы ответить на этот вопрос, надо изучить свойства газа.
Лекция Julia Kjahrenova 1. Это раздел, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе рассмотрения их молекулярного.
Газы Давление Микроскопические параметры газа : - Давление - Объем - Температура.
Основное уравнение мкт. Основное уравнение молекулярно - кинетической теории.
Температура. Уравнение состояния Примем в качестве постулата, что в состоянии хаотического движения молекул газа имеет место закон равнораспределения энергии.
Уравнение состояния идеального газа Уравнение состояния идеального газа.
Основы молекулярно – кинетической теории (МКТ). Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Строение.
СТРОЕНИЕ ТРЕХ АГРЕГАТНЫХ СОСТОЯНИЙ ТЕЛА УЧЕНИЦА 10 «А» КЛАССА ДАДАЕВА ЛИАНА.
Молекулярная физика Молекулярная структура вещества.
Идеальный газ. Основное уравнение МКТ. Дубовицкая Анна 10 «Б»
МОЛЕКУЛЯРНАЯ ФИЗИКА Основные положения МКТ 1. Все вещества состоят из молекул, которые разделены промежутками. 2. Молекулы беспорядочно движутся. 3.
Идеальный газ в МКТ Цели урока: 1. Иметь представление о идеальном газе, как физической модели. 2. Понимать и перечислять, от каких величин зависит давление.
Температура Учитель Кононов Геннадий Григорьевич СОШ 29 Славянский район Краснодарского края.
Идеальный газ. Основное уравнение МКТ идеального газа. Температура и ее измерение. Абсолютная температура.
Сегодня: пятница, 24 июля 2015 г.. Тема : Основы молекулярной физики и термодинамики 1. Предмет и методы исследования 2. Термодинамические системы, параметры,
Молекулярная физика. Молекулярно-кинетическая теория учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как.
Основное уравнение молекулярно-кинетической теории и следствия из него
Транксрипт:

МОЛЕКУЛЯРНО- КИНЕТИЧЕСКАЯ ТЕОРИЯ (МКТ)

Молекулярно-кинетическая теория (МКТ) занимается изучением свойств веществ, основываясь при этом на представлениях о частицах вещества. МКТ базируется на трех основных положениях: 1. Все вещества состоят из частиц - молекул, атомов и ионов. 2. Частицы вещества беспрерывно и беспорядочно движутся. 3. Частицы вещества взаимодействуют друг с другом.

СВОЙСТВА ГАЗОВ, ЖИДКОСТЕЙ, ТВЕРДЫХ ТЕЛ Все тела состоят из атомов или молекул (частицы вещества), которые беспорядочно двигаются, а также взаимодействуют с силами притяжения и отталкивания. Именно различиями в тепловом движении этих частиц, а также их взаимодействием при разных условиях обуславливается факт существования у вещества нескольких агрегатных состояний: газообразное, жидкое, твёрдое.

ГАЗЫ Среднее расстояние между частицами газа намного превышает размеры самих частиц, таким образом, в промежутках между столкновениями частицы газа проходят расстояния, на несколько порядков превышающие собственные размеры. Например, в воздухе (при нормальных условиях) длина свободного пробега молекулы составляет, что в тысячу раз больше среднего размера молекулы. При таких больших расстояниях между молекулами силы межмолекулярного взаимодействия между ними очень малы. С энергетической точки зрения это означает, что потенциальной энергией взаимодействия молекул (по сравнению с кинетической энергией их движения) можно пренебречь. Если рассматривать кинетическую энергию, то есть движение молекул газа, то стоит отметить, что каждая из них участвует не только в поступательном, но и во вращательном движении (если это не одноатомный газ), а если учитывать очень малое взаимодействие молекул газа, то эти молекулы будут принимать участие и в колебательном движении. Таким образом, любая молекула газа, не испытывая сильного взаимодействия с соседними, может оказаться в произвольном месте сосуда в любой момент времени, поэтому говорят, что газы не сохраняют ни форму, ни объём. Такое свойство газов широко используется в современной технике (пневматическое оборудование, тепловые двигатели и т. д.).

ТВЁРДЫЕ ТЕЛА Твёрдые тела являются полной противоположностью газам. В них не происходит свободного передвижения частиц. Молекулы находятся в узлах кристаллической решётки. То есть существует строгий периодический порядок в расположении частиц, составляющих твёрдое тело. В твёрдых телах потенциальная энергия взаимодействия очень существенна, кинетическая энергия, по сравнению с потенциальной, не велика. Атомы, молекулы или ионы совершают лишь колебательные движения возле положения равновесия. Расстояния между соседними частицами примерно равны размерам самих частиц. Твёрдые тела сохраняют форму и объём (для примера, если подвергнуть пружинку деформации, она вернётся к предыдущей форме, не изменив при этом объём). Виды кристаллических решёток отличаются в зависимости от вещества (главное – это периодичность и порядок). Точки пространства, в которых находятся частицы твёрдого тела, называются узлами кристаллической решётки. Из-за стабильности и порядка в расположении частиц в узлах кристаллической решётки, физики говорят, что твёрдые тела обладают дальним и ближним порядками в расположении частиц вещества

ЖИДКОСТЬ Жидкости, в отличие от твёрдых тел, обладают ближним порядком в расположении частиц вещества. Частицы в жидких телах «упакованы» плотно и, как в твёрдых телах, совершают колебания около положения равновесия. Попытка сжать жидкость быстро приводит к деформации молекул и встречает мощное сопротивление со стороны жидкости. То есть жидкости практически не сжимаемы. Хотя молекулы жидкости расположены почти так же, как в твёрдом теле, жидкость обладает текучестью. Это объясняется тем, что, в отличие от твёрдого тела, колебания молекул около положения равновесия в жидкости не вечны, в какой-то момент времени молекула совершает «скачок», переходя в другое положение. Следовательно, жидкость хорошо сохраняет объём, но не сохраняет форму. С энергетической точки зрения жидкость занимает промежуточное положение между твёрдым телом и газом – частицы жидкости обладают существенной на микроскопическом уровне, как кинетической энергией движения, так и потенциальной энергией взаимодействия.

АМОРФНЫЕ ВЕЩЕСТВА Аморфное состояние тела называют промежуточным между твёрдым и жидким. Примером такого вещества является пластилин, смола, стекло. Молекулы в аморфных веществах расположены подобно молекулам в жидкости, то есть обладают ближним порядком, но не обладают дальним порядком. Можно с определённой долей условности назвать аморфные тела очень вязкими жидкостями. Убедиться в этом можно, если посмотреть на профиль оконных стёкол в старинных замках. Вверху эти стёкла гораздо уже, чем внизу – стекло за многие годы «стекает» вниз

ИДЕАЛЬНЫЙ ГАЗ Идеальный газ – математическая модель газа, в которой предполагается, что: а) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; б) суммарный объём молекул газа пренебрежимо мал. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. Модель идеального газа вполне эффективно описывает окружающие нас газы (в частности, воздух).

СКОРОСТИ ДВИЖЕНИЯ МОЛЕКУЛ. СРЕДНЯЯ КВАДРАТИЧНАЯ СКОРОСТЬ Принято считать, что все молекулы идеального газа двигаются с одинаковой скоростью, которую назвали средней квадратичной. Средняя квадратичная скорость – это скорость, равная корню квадратному из средней арифметической величины квадратов скоростей отдельных молекул; она несколько отличается от средней арифметической скорости молекул. где V1,V2, Vn – скорости отдельных молекул, N – количество молекул.

БРОУНОВСКОЕ ДВИЖЕНИЕ Броуновское движение – непрерывное тепловое хаотическое движение молекул вещества Этот термин вошёл в обиход после того, как в 1827 г. шотландский ботаник Роберт Броун, смешав пыльцу плавуна с водой и рассмотрев каплю смеси под микроскопом, наблюдал вышеупомянутое движение. Однако, так как Броун мог рассмотреть в микроскоп лишь частицы пыльцы, он неправильно трактовал своё открытие (думал, что пыльца живая). Спустя почти век уже немецкий физик Альберт Эйнштейн понял, что крупную частицу пыльцы просто- напросто толкают намного более мелкие молекулы воды, которые сами уже непосредственно движутся хаотически. Таким образом, наличие броуновского движения полностью подтверждают введённые положения МКТ. Сам факт движения пыльцы подтверждает их. Раз пыльца движется, значит, на неё действуют силы. Единственная возможная причина возникновения этих сил – это соударения каких-либо маленьких тел. Следовательно, уже невозможно сомневаться в первых двух положениях. А так как частица пыльцы меняет своё направление, значит в различные моменты времени количество ударов по пыльце с определённой стороны разное, а значит, нельзя сомневаться и в том, что молекулы воды взаимодействуют друг с другом.

МАССА МОЛЕКУЛЫ Масса молекулы обозначается m и, как и любая другая масса, измеряется в кг. Несложно догадаться, что для нахождения описываемой величины необходимо измерить массу некой порции вещества и поделить её на количество молекул, входящих в эту порцию. Относительная атомная масса – отношения массы атома определённого химического элемента к одной двенадцатой массы атома углерода.

КОЛИЧЕСТВО ВЕЩЕСТВА, ЧИСЛО АВОГАДРО Количество вещества – физическая величина, характеризующая количество молекул, входящих в некую порцию вещества. Обозначение – Единица измерения – моль. Молярная масса – масса одного моля вещества.

ИДЕАЛЬНЫЙ ГАЗ Идеальный газ – модель газа, в рамках которого молекулы и атомы газа представлены в виде очень маленьких (исчезающих размеров) упругих шариков, которые не взаимодействуют друг с другом (без непосредственного контакта), а только сталкиваются. Параметры идеального газа То есть микропараметры описывают состояние отдельно взятой частицы (микротела), а макропараметры – состояние всей порции газа (макротела). Запишем теперь соотношение, связывающее одни параметры с другими, или же основное уравнение МКТ: n – кон­цен­тра­ция ча­стиц газа – ко­ли­че­ство ча­стиц, при­хо­дя­щих­ся на еди­ни­цу объ­ё­ма; - средняя скорость движения частиц ;

ОСНОВНОЕ УРАВНЕНИЕ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ Основное уравнение МКТ вводит нам прямо пропорциональную зависимость макропараметра давления от микропараметров массы молекулы и средней скорости движения в квадрате. То есть чем тяжелее частицы и чем больше их скорости, тем сильнее они врезаются в стенки сосуда и тем большее оказывают давление.

УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА 1. Уравнение состояния для постоянной массы Впервые одну из формулировок уравнения состояния вывел в 1834 г. французский учёный Бэнуа Клапейрон. Взяв только тот случай, когда масса порции газа постоянна, а следовательно, и количество частиц постоянно, он сделал следующие преобразования:

2. Уравнение состояния для постоянного количества вещества Через некоторое время, а именно в 1874 г., теперь уже русский химик Дмитрий Менделеев несколько обобщил это уравнение: При неважно каком изменении одного из параметров порции газа, остальные будут меняться таким образом, что такое соотношение, как остаётся неизменной величиной.

ТЕМПЕРАТУРА - МЕРА СРЕДНЕЙ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МОЛЕКУЛ Тепловое равновесие – такое состояние тела, при котором его макроскопические параметры не меняются длительное время. Температура – мера теплового равновесия тела или системы тел. И сведения о температурах двух тел дают нам представление о направлении перехода тепла – от более нагретого тела к менее нагретому. Для газовых термометров справедливо следующее: То есть для измерения температуры либо фиксируется изменение давления при постоянном объёме, либо объём при постоянном давлении.

АБСОЛЮТНАЯ ШКАЛА ТЕМПЕРАТУР Эту шкалу ввёл в 1848 г английский физик Уильям Томпсон (лорд Кельвин). Зная, что при росте температур тепловая скорость движения молекул и атомов тоже растёт, нетрудно установить, что при уменьшении температур скорость будет падать и при определённой температуре рано или поздно станет нулём, как и давление (исходя и основного уравнения МКТ). Эту температуру и выбрали за начало отсчёта. Совершенно очевидно, что температура не может достигнуть значения меньше этого значения, поэтому оно получило название «абсолютный ноль температур». Для удобства же 1 градус по шкале Кельвина был приведён в соответствии с 1 градусом по шкале Цельсия.

ТЕМПЕРАТУРА КАК МЕРА СРЕДНЕЙ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ МОЛЕКУЛ Конкретное же формульное соотношение вывел австрийский физик Людвиг Больцман K– ко­эф­фи­ци­ент Больц­ма­на. Как будет зависеть давление идеального газа от температуры:

ГАЗОВЫЕ ЗАКОНЫ 1. Изотермические процессы Изотермический процесс – процесс перехода идеального газа из одного состояния в другое без изменения температуры. Закон, описывающий связь меду параметрами газа при таком процессе, называется закон Бойля-Мариотта в честь двух учёных, практически одновременно выведших его: англичанина Роберта Бойля и француза Эдма Мариотта. Из этого закона следует обратно пропорциональная связь давления и объёма: при увеличении объёма наблюдается уменьшение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть P и V, имеет следующий вид и называется изотермой

Изобарный (или изобарический) процесс – процесс перехода идеального газа из одного состояния в другое при постоянном значении давления. Впервые такой процесс рассмотрел французский учёный Жозеф-Луи Гей-Люссак. 2. Изобарные процессы Из этого закона следует прямо пропорциональная связь между температурой и объёмом: при увеличении температуры наблюдается увеличение объёма, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и V, имеет следующий вид и называется изобарой

Изохорный (или изохорический) процесс – процесс перехода идеального газа из одного состояния в другое при постоянном значении объёма. Процесс рассмотрен впервые французом Жаком Шарлем, поэтому закон носит его имя. 3. Изохорные процессы Из этого закона следует прямо пропорциональная связь между температурой и давлением: при увеличении температуры наблюдается увеличение давления, и наоборот. График зависимости меняющихся величин в уравнении, то есть T и P, имеет следующий вид и называется изохорой.