Карагандинский государственный медицинский университет Кафедра: молекулярной биологии и генетикиСРС на тему: «Теломеры.Теломеразная активность» Выполнил:Утегенов.

Презентация:



Advertisements
Похожие презентации
Выполнила студентка 206-ой группы, Сарсенова Гульшат.
Advertisements

Механизмы старения клетки Выполнила: студентка 3 курса группы б Солодова Е. В. Проверила: Наумова Л. А. Сургут, 2018 г.
Электронный учебник по биологии по теме: ДНК Подготовила Берзина Анастасия 8 «В» класс.
Репликация ДНК это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской.
Павлий Татьяна ученица 10 класса МОУ Еланская сош 2009г.
Роль генетика Пример ответа ученика. Задачи: Раскрыть сущность клеточного цикла. Процесс митоза. Процесс мейоза. Строение хромосом. Биосинтез белка.
LOGO ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КРАСНОЯРСКИЙ МЕДИКО-ФАРМАЦЕВТИЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО.
МЕЙОЗ – ( от греч. Meiosis– уменьшение )– форма ядерного деления, сопровождающаяся уменьшением числа хромосом с диплойдного ( 2n) до гаплойдного (n).
Генная Инженерия Работу выполнил ученик 10 класса – Кириллов Роман.
Выполнил : Дюсикеев Ж.. 1. Схема процесса 2. Дифферон 3. Трансформация 4. Проблема предрака 5. Неспецифический характер вирусного канцерогенеза.
Беляков Вадим Щербаков Леонид. Генетическая инжене́рия (генная инженерия) совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК,
Генетика молодости. Генетика наука о закономерностях наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетик растений,
Презентация к уроку биологии 9 класс Учитель М. А. Маринюк.
МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ ТРАНСКРИПЦИИ План 1.Транскрипция в клетках прокариот. 2.Отличие транскрипции в клетках про- и эукариот.
Репарация ДНК. Мутации.. План лекции: 1.Репарация ДНК. Виды мутаций. 2.Биохимический полиморфизм. Биологическая роль. 3.Ингибиторы матричных синтезов.
Клетка, её строение, химический состав, жизненные свойства.
Синтез РНК. Этапы. Abu Moldir Deryabina Nina. Необходимые условия для биосинтеза РНК Наличие ДНК матрицы; Наличие четырёх типов нуклеотидов; Фермент РНК.
Биосинтез белка (с) Аксенова Светлана Джоновна ГОУ СОШ 156 с углубленным изучением информатики Калининского района Учитель биологии Октябрь 2007 г.
Транксрипт:

Карагандинский государственный медицинский университет Кафедра: молекулярной биологии и генетикиСРС на тему: «Теломеры.Теломеразная активность» Выполнил:Утегенов Е. Проверила:Татина.Е.С Караганда 2013 г.

Существование специальных структур на концах хромосом было постулировано в 1938 году классиками генетики, лауреатами Нобелевской премии Барбарой Мак-Клинток и Германом Мёллером. Независимо друг от друга они обнаружили, что фрагментация хромосом (под действием рентгеновского облучения) и появление у них дополнительных концов ведут к хромосомным перестройкам и деградации хромосом. Существование специальных структур на концах хромосом было постулировано в 1938 году классиками генетики, лауреатами Нобелевской премии Барбарой Мак-Клинток и Германом Мёллером. Независимо друг от друга они обнаружили, что фрагментация хромосом (под действием рентгеновского облучения) и появление у них дополнительных концов ведут к хромосомным перестройкам и деградации хромосом. В сохранности оставались лишь области хромосом, прилегающие к их естественным концам. Лишенные концевых теломер, хромосомы начинают сливаться с большой частотой, что ведет к тяжелым генетическим аномалиям. Следовательно, заключили они, естественные концы линейных хромосом защищены специальными структурами. В сохранности оставались лишь области хромосом, прилегающие к их естественным концам. Лишенные концевых теломер, хромосомы начинают сливаться с большой частотой, что ведет к тяжелым генетическим аномалиям. Следовательно, заключили они, естественные концы линейных хромосом защищены специальными структурами. В 1932 Г. Мёллер предложил называть их теломерами (от греч. телос - конец и мерос - часть). В 1932 Г. Мёллер предложил называть их теломерами (от греч. телос - конец и мерос - часть). Хромосома имеет две теломеры. Хромосома имеет две теломеры. У человека теломеры содержат единственный повтор GGGTTA. У человека теломеры содержат единственный повтор GGGTTA.

Строение теломер В клетках человека теломеры обычно представлены одноцепочечной ДНК и состоят из несколько тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые В клетках человека теломеры обычно представлены одноцепочечной ДНК и состоят из несколько тысяч повторяющихся единиц последовательности ТТАГГГ. Эти последовательности с высоким содержанием гуанина стабилизируют концы хромосом, формируя очень необычные структуры, называемые G-квадруплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом G-квадруплексами и состоящие из четырёх, а не двух взаимодействующих оснований. Четыре гуаниновых основания, все атомы которых находятся в одной плоскости, образуют пластинку, стабилизированную водородными связями между основаниями и хелатированием в центре неё иона металла (чаще всего калия). Эти пластинки располагаются стопкой друг над другом Структура теломер. Зелёным цветом показан ион металла, хелатированный в центре структуры

Основная функция этих участков поддержание целостности концов хромосом; Основная функция этих участков поддержание целостности концов хромосом; Теломера содержит специальные последовательности ДНК, обеспечивающие точную репликацию хромосом; Теломера содержит специальные последовательности ДНК, обеспечивающие точную репликацию хромосом; Кроме своей роли в репликации и копировании хромосом теломеры, участвуют в мейотическом спаривании хромосомам, мейотической и митотической сегрегации хромосом и в организации ядра; Кроме своей роли в репликации и копировании хромосом теломеры, участвуют в мейотическом спаривании хромосомам, мейотической и митотической сегрегации хромосом и в организации ядра; Ответственны за прикрепление хромосом к ядерным матриксом; Ответственны за прикрепление хромосом к ядерным матриксом; Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации. Теломеры также защищают концы ДНК от деградации экзонуклеазами и предотвращают активацию системы репарации.

" КОНЦЕВАЯ НЕДОРЕПЛИКАЦИЯ ДНК" ДНК-полимеразы, синтезируя дочернюю цепь ДНК, прочитывают родительскую цепь в направлении от ее 3'-конца к 5'-концу. Соответственно дочерняя цепь синтезируется в направлении 5' 3'. В противоположном направлении синтез цепи ДНК фермент катализировать не может. ДНК-полимераза начинает синтез только со специального РНК-праймера - короткой РНК-затравки, комплементарной ДНК. После окончания синтеза ДНК РНК- праймеры удаляются, а пропуски в одной из дочерних цепей ДНК заполняются ДНК-полимеразой. Однако на 3'-конце ДНК такой пропуск заполнен быть не может, и поэтому 3'-концевые участки ДНК остаются однотяжевыми, а их 5'- концевые участки - недореплицированными. Отсюда ясно, что каждый раунд репликации хромосом будет приводить к их укорочению. Понятно, что прежде всего должна сокращаться длина тело мерной ДНК.

Первым на проблему "концевой недорепликации ДНК" обратил внимание А.М. Оловников в 1971 году. Первым на проблему "концевой недорепликации ДНК" обратил внимание А.М. Оловников в 1971 году. Он высказал гипотезу о том, что потеря концевых последовательностей ДНК вследствие их недорепликации ведет к старению клетки. Он высказал гипотезу о том, что потеря концевых последовательностей ДНК вследствие их недорепликации ведет к старению клетки. Иными словами, предполагалось, что процесс укорочения теломер и есть тот часовой механизм, который определяет репликативный потенциал "смертной" клетки, и когда длина теломер становится угрожающе короткой, этот механизм предотвращает дальнейшее деление клетки. Иными словами, предполагалось, что процесс укорочения теломер и есть тот часовой механизм, который определяет репликативный потенциал "смертной" клетки, и когда длина теломер становится угрожающе короткой, этот механизм предотвращает дальнейшее деление клетки. А.М. Оловников предположил также, что в нестареющих клетках (а к ним кроме раковых относятся зародышевые, стволовые и другие генеративные клетки) должна существовать специализированная ферментативная система, которая контролирует и поддерживает длину тело мерной ДНК. А.М. Оловников предположил также, что в нестареющих клетках (а к ним кроме раковых относятся зародышевые, стволовые и другие генеративные клетки) должна существовать специализированная ферментативная система, которая контролирует и поддерживает длину тело мерной ДНК. Гипотеза А.М. Оловникова

Теломераза Гипотеза А.М. Оловникова нашла убедительное подтверждение в последующие годы. Гипотеза А.М. Оловникова нашла убедительное подтверждение в последующие годы. Во-первых, было установлено, что теломеры нормальных (то есть обреченных на старение) клеток действительно укорачиваются на нуклеотидных звеньев при каждом клеточном делении. Во-первых, было установлено, что теломеры нормальных (то есть обреченных на старение) клеток действительно укорачиваются на нуклеотидных звеньев при каждом клеточном делении. Во-вторых, в 1984 году Э. Блэкберн и Э. Грайдер выделили фермент, который с помощью механизма, отличного от механизма реакций, лежащих в основе репликации ДНК, синтезирует тепломерную ДНК. Этот фермент был назван теломеразой Во-вторых, в 1984 году Э. Блэкберн и Э. Грайдер выделили фермент, который с помощью механизма, отличного от механизма реакций, лежащих в основе репликации ДНК, синтезирует тепломерную ДНК. Этот фермент был назван теломеразой Теломеразы являются рибонуклеиновыми ферментами. РНК- компонент теломераз содержит короткий район (матрицу), комплементарный одному повтору G- богатой цепи тело мерной ДНК. Теломеразы являются рибонуклеиновыми ферментами. РНК- компонент теломераз содержит короткий район (матрицу), комплементарный одному повтору G- богатой цепи тело мерной ДНК.

Вторичная структура РНК-компонента теломеразы инфузории Tetrahymena termophila

Механизм действия теломераз Повторное копирование матрицы, включающее этап элонгации, когда дезоксирибонуклеотиды последовательно добавляются к 3'-концу G-богатой цепи теломеры, Повторное копирование матрицы, включающее этап элонгации, когда дезоксирибонуклеотиды последовательно добавляются к 3'-концу G-богатой цепи теломеры, и этап транслокации фермента на конец новообразованной цепи. и этап транслокации фермента на конец новообразованной цепи. В результате действия теломеразы образуется достаточно длинный 3'-конец, по которому затем достраивается комплементарная цепь. В итоге теломера становится длиннее. В результате действия теломеразы образуется достаточно длинный 3'-конец, по которому затем достраивается комплементарная цепь. В итоге теломера становится длиннее.

(1) обратная транскриптаза; (1) обратная транскриптаза; (2) теломеразная РНК; (2) теломеразная РНК; (3) нуклеаза, отщепляет от 3'-конца тело мерной ДНК один за другим несколько нуклеотидов до тех пор, пока на этом конце не окажется последовательность, комплементарная нужному участку матричного сегмента теломеразной РНК; (3) нуклеаза, отщепляет от 3'-конца тело мерной ДНК один за другим несколько нуклеотидов до тех пор, пока на этом конце не окажется последовательность, комплементарная нужному участку матричного сегмента теломеразной РНК; субъединица(4), отвечающая за поиск и связывание 3'-конца хромосомы (выполняющая якорную функцию); субъединица(4), отвечающая за поиск и связывание 3'-конца хромосомы (выполняющая якорную функцию); субъединицы(5), связывающие продукт реакции (однотяжевую ДНК); субъединицы(5), связывающие продукт реакции (однотяжевую ДНК); (6) комплементарный РНК-ДНК комплекс. (6) комплементарный РНК-ДНК комплекс. В механизм входят: а-Нуклеазная субъединица (3) теломеразы «объедает» 3'-конец ДНК, превращая его в праймер для ДНК-полимеразной реакции; б- синтез ДНК-повтора на РНК-матрице.

Необходимо отметить, что теломераза синтезирует лишь небольшой участок теломеры, утрачиваемый вследствие концевой репликации. что теломераза синтезирует лишь небольшой участок теломеры, утрачиваемый вследствие концевой репликации. Основная же часть тело мерной ДНК реплицируется путем обычного синтеза ведущей и отстающей цепей с помощью ДНК-полимеразы. Основная же часть тело мерной ДНК реплицируется путем обычного синтеза ведущей и отстающей цепей с помощью ДНК-полимеразы.

Теломеразная активность Теломераза добавляет особые повторяющиеся последовательности ДНК к 3'-концу цепи ДНК на участках теломер. Теломераза добавляет особые повторяющиеся последовательности ДНК к 3'-концу цепи ДНК на участках теломер. Длина теломерных участков хромосом увеличивается или сохраняется на постоянном уровне, компенсируя таким образом концевую недорепликацию и позволяя клетке делиться неограниченно долго. Длина теломерных участков хромосом увеличивается или сохраняется на постоянном уровне, компенсируя таким образом концевую недорепликацию и позволяя клетке делиться неограниченно долго. РНК-компонент экспрессируется на постоянном уровне практически во всех клетках, и для индуцирования теломеразной активности необходима экспрессия белкового компонента, названного поэтому каталитическим компонентом теломеразы. РНК-компонент экспрессируется на постоянном уровне практически во всех клетках, и для индуцирования теломеразной активности необходима экспрессия белкового компонента, названного поэтому каталитическим компонентом теломеразы. Искусственно индуцированная экспрессия гена каталитического компонента теломеразы, делает клеточную культуру иммортальной (бессмертной), т.е. способной делиться неограниченно долго, отменяя тем самым для культуры предел Хейфлика. Искусственно индуцированная экспрессия гена каталитического компонента теломеразы, делает клеточную культуру иммортальной (бессмертной), т.е. способной делиться неограниченно долго, отменяя тем самым для культуры предел Хейфлика. Теломераза экспрессируется в стволовых, половых и некоторых других типах клеток организма, которым необходимо постоянно делиться для функционирования определённых тканей. Теломераза экспрессируется в стволовых, половых и некоторых других типах клеток организма, которым необходимо постоянно делиться для функционирования определённых тканей. Клетки 85 % раковых опухолей обладают теломеразной активностью. Клетки 85 % раковых опухолей обладают теломеразной активностью.

Теломеразная активность соматических клеток В подавляющем большинстве соматических клеток человека на стадии раннего эмбриогенеза происходит выключение гена ее каталитической субъединицы (обратной транскриптазы),кодирующего теломеразу. В подавляющем большинстве соматических клеток человека на стадии раннего эмбриогенеза происходит выключение гена ее каталитической субъединицы (обратной транскриптазы),кодирующего теломеразу. Тем самым инициируется процесс прогрессивного укорочения теломер, или так называемого "репликативного" старения. Тем самым инициируется процесс прогрессивного укорочения теломер, или так называемого "репликативного" старения. Другие же составляющие теломеразы, включая теломеразную РНК, образуются в этих клетках, хотя и в меньших количествах, чем в их "бессмертных" прародителях, но постоянно (или, как говорят, конститутивно). Другие же составляющие теломеразы, включая теломеразную РНК, образуются в этих клетках, хотя и в меньших количествах, чем в их "бессмертных" прародителях, но постоянно (или, как говорят, конститутивно).

Теломеразная активность раковых клеток Клетки большинства раковых опухолей характеризуются достаточно высокой активностью теломеразы, которая поддерживает длину теломер на постоянном уровне. Клетки большинства раковых опухолей характеризуются достаточно высокой активностью теломеразы, которая поддерживает длину теломер на постоянном уровне. Этот уровень заметно ниже, чем, например, у эмбриональных клеток, но он достаточен, чтобы обеспечить безграничное деление раковых клеток в культуре. Этот уровень заметно ниже, чем, например, у эмбриональных клеток, но он достаточен, чтобы обеспечить безграничное деление раковых клеток в культуре. Сравнительно небольшая длина теломер у большинства раковых клеток наводит на мысль о том, что они происходят из нормальных клеток, достигших предкризисного состояния. Сравнительно небольшая длина теломер у большинства раковых клеток наводит на мысль о том, что они происходят из нормальных клеток, достигших предкризисного состояния. Это состояние характеризуется нарушением регуляции многих биохимических реакций. В таких клетках происходят многочисленные хромосомные перестройки, которые в том числе ведут и к злокачественной трансформации. Это состояние характеризуется нарушением регуляции многих биохимических реакций. В таких клетках происходят многочисленные хромосомные перестройки, которые в том числе ведут и к злокачественной трансформации. Большинство этих клеток погибают, но в части из них в результате случайных мутаций может активироваться постоянная экспрессия генов теломеразы, которая будет поддерживать длину теломер на уровне, необходимом и достаточном для их функционирования. Большинство этих клеток погибают, но в части из них в результате случайных мутаций может активироваться постоянная экспрессия генов теломеразы, которая будет поддерживать длину теломер на уровне, необходимом и достаточном для их функционирования.

Механизм образования опухолевой клетки

Рак без теломераз? Некоторое время вызывал недоумение тот факт, что примерно пятая часть проанализированных раковых опухолей и клеток вообще не содержала активной теломеразы. Некоторое время вызывал недоумение тот факт, что примерно пятая часть проанализированных раковых опухолей и клеток вообще не содержала активной теломеразы. Оказалось,что длина теломер в них поддерживается на должном уровне. Оказалось,что длина теломер в них поддерживается на должном уровне. Таким образом, в этих клетках действует другой, не теломеразный, а скорее рекомбинационный механизм образования тело мерной ДНК Таким образом, в этих клетках действует другой, не теломеразный, а скорее рекомбинационный механизм образования тело мерной ДНК Рак кожи Рак легких

Стволовые клетки одна из которых останется стволовой ("бессмертной"), а другая вступит в процесс дифференцировки У стволовой клетки всегда есть возможность дать две дочерние клетки, Благодаря этому Служат постоянным источником разнообразных клеток организма Например, стволовые клетки костного мозга дают начало гемопоэзу (образование клеток крови), а из базальных клеток эпидермиса происходят клетки кожного покрова

Как только потомки половых или стволовых клеток начинают дифференцироваться, активность теломеразы падает Как только потомки половых или стволовых клеток начинают дифференцироваться, активность теломеразы падает и их теломеры начинают укорачиваться. и их теломеры начинают укорачиваться. В клетках, дифференцировка которых завершена, активность теломеразы падает до нуля, В клетках, дифференцировка которых завершена, активность теломеразы падает до нуля, и, с каждым клеточным делением они с неизбежностью приближаются к состоянию сенесенса (перестают делиться). и, с каждым клеточным делением они с неизбежностью приближаются к состоянию сенесенса (перестают делиться). Вслед за этим наступает кризис, Вслед за этим наступает кризис, и большинство клеток погибают и большинство клеток погибают

Вывод Какие же практические выводы следуют из того, что на сегодняшний день удалось узнать о связи между активностью теломеразы, раковым ростом и старением клеток. Какие же практические выводы следуют из того, что на сегодняшний день удалось узнать о связи между активностью теломеразы, раковым ростом и старением клеток. Казалось бы, они лежат на поверхности: не хочешь стареть - активируй теломеразу; хочешь убить раковую опухоль - убей в ней сначала теломеразу. Казалось бы, они лежат на поверхности: не хочешь стареть - активируй теломеразу; хочешь убить раковую опухоль - убей в ней сначала теломеразу. Процесс старения не только организма, но и клетки - это исключительно сложный комплекс изменений во множестве биохимических реакций, и его вряд ли можно повернуть вспять, воздействуя только на какую-то одну из них. Процесс старения не только организма, но и клетки - это исключительно сложный комплекс изменений во множестве биохимических реакций, и его вряд ли можно повернуть вспять, воздействуя только на какую-то одну из них. В то же время существуют вполне реальные планы активировать теломеразу в клетках кожи, которую пересаживают пациентам с сильными ожогами, и тем самым активировать их рост. В то же время существуют вполне реальные планы активировать теломеразу в клетках кожи, которую пересаживают пациентам с сильными ожогами, и тем самым активировать их рост. Что же касается разработки методов избирательного подавления теломеразной активности в раковых опухолях, то сейчас это важное направление в поиске новых средств борьбы со злокачественными заболеваниями. Пока большинство работ связано с испытанием ингибиторов обратных транскриптаз (каталитических субъединиц теломераз). Что же касается разработки методов избирательного подавления теломеразной активности в раковых опухолях, то сейчас это важное направление в поиске новых средств борьбы со злокачественными заболеваниями. Пока большинство работ связано с испытанием ингибиторов обратных транскриптаз (каталитических субъединиц теломераз). Изучение тонкой структуры теломер и механизма действия теломераз находится еще только в начальной стадии. Однако они привлекают к себе огромный интерес исследователей, работающих в самых разных областях биологии и медицины, и здесь уже в ближайшее время можно ждать новых интересных открытий. Изучение тонкой структуры теломер и механизма действия теломераз находится еще только в начальной стадии. Однако они привлекают к себе огромный интерес исследователей, работающих в самых разных областях биологии и медицины, и здесь уже в ближайшее время можно ждать новых интересных открытий.

Список использованной литературы 1. Альбертс Б., Брей Б., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир, Т Альбертс Б., Брей Б., Льюис Дж. и др. Молекулярная биология клетки. М.: Мир, Т Теломера, теломераза, рак и старение // Биохимия Т Теломера, теломераза, рак и старение // Биохимия Т html 3. html Егоров Е.Е., Дашинимаев Э.Б., Молдавер М.В., Вишнякова Х.С, Терехов С.М, Чеглаков И.Б., Ярыгин К.Н., Антонова Г.А,, Корочкин Л.И., Зеленин А.В. Иммортализация различных клеток человека с помощью введения гена каталитического компонента теломеразы // Всероссийская конференция «Перспективы фундаментальной геронтологии». Санкт-Петербург, Тезисы докладов. С Егоров Е.Е., Дашинимаев Э.Б., Молдавер М.В., Вишнякова Х.С, Терехов С.М, Чеглаков И.Б., Ярыгин К.Н., Антонова Г.А,, Корочкин Л.И., Зеленин А.В. Иммортализация различных клеток человека с помощью введения гена каталитического компонента теломеразы // Всероссийская конференция «Перспективы фундаментальной геронтологии». Санкт-Петербург, Тезисы докладов. С Дашинимаев Э.Б., Егоров Е.Е., Сабурина И.Н., Вишнякова Х.С. Иммортализация эмбриональных нейральных стволовых клеток человека с помощью введения гена каталитического компонента теломеразы // 50-ая научная конференция МФТИ «Современные проблемы фундаментальных и прикладных наук». Москва-Долгопрудный, Тезисы докладов. С Дашинимаев Э.Б., Егоров Е.Е., Сабурина И.Н., Вишнякова Х.С. Иммортализация эмбриональных нейральных стволовых клеток человека с помощью введения гена каталитического компонента теломеразы // 50-ая научная конференция МФТИ «Современные проблемы фундаментальных и прикладных наук». Москва-Долгопрудный, Тезисы докладов. С