Тепловые двигатели. За и против. ГАПОУ «Чистопольский многопрофильный колледж» Открытый урок по физике в группе 106 Преподаватель физики Хафизова Минзихан.

Презентация:



Advertisements
Похожие презентации
Тепловые двигатели МОУ «Караваинская СОШ» учитель физики – Юмашев А.В.
Advertisements

Тепловые двигатели Выполнила Ч. Валерия 8 В класс.
Презентация по физике : Выполнена : Тайновой М. В. Тайновой А. В. Учитель : Сергеева Елена Евгеньевна.
Т ЕПЛОВЫЕ ДВИГАТЕЛИ. Работу выполнила ученица 10 «А» класса: Аляйская Евгения.
Тепловые двигатели. Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. В 17 в. был изобретён тепловой.
Влияние тепловых двигателей на окружающую среду
ТЕПЛОВЫЕ ДВИГАТЕЛИ ЗА И ПРОТИВ. Основная идея: Превращение внутренней энергии топлива в механическую работу.
Воздействие тепловых двигателей на окружающую среду. Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов. Во-первых,
Тема урока : « Техническое и экологическое значение тепловых двигателей.» Цели урока : Сформулировать основные понятия присущие тепловым двигателям, раскрыть.
1. Изучить ДВС 2. Изучить паровую турбину 3. Научиться определять КПД теплового двигателя.
Открытый урок по теме «Тепловые двигатели». Первой паровой машиной была игрушка, изобретенная 2000 лет до наших дней Героном Александрийским. Пар, выходящий.
КПД тепловых двигателей. Первая паровая машина В 1770 г. французский инженер Ж. Кюньо построил самодвижущуюся тележку, приводимую в движение паром, которая.
1.Изучить принцип работы тепловых двигателей. 2.Формировать умения выделять главное, сопоставлять, делать выводы; развивать речь, совершенствовать интеллектуальные.
Работа газа и пара при расширении. ДВС (двигатель внутреннего сгорания) Урок 17-7.
Презентация Двигатель внутреннего сгорания
8 класс Это машины, в которых внутренняя энергия топлива превращается в механическую энергию.
Презентация на тему «Тепловые машины». Тепловые машины. Паровая турбина. Двигатель внутреннего сгорания. Газовая турбина и реактивные двигатели.
Автор: учитель физики Кучкова Е.Н.. 1. Беспорядочное движение частиц, из которых состоит тело, называется… 2. Энергия движения и взаимодействия частиц,
Первый закон термодинамики. Тепловые машины и их применение. Презентацию сделала : Кочерова О. гр - па : 1 Б 2.
Тепловой двигатель Тепловой двигатель. Тепловой двигатель устройство, совершающее работу за счет использования внутренней энергии топлива, тепловая машина,
Транксрипт:

Тепловые двигатели. За и против. ГАПОУ «Чистопольский многопрофильный колледж» Открытый урок по физике в группе 106 Преподаватель физики Хафизова Минзихан Габдулловна Хафизова Минзихан Габдулловна

Энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую. Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе.

Сравни

Опыт "Воздушное огниво"

Адиабатным процессом - называется такой процесс, который протекает в системе без теплообмена с внешней средой

Самооценка – критерии: Самооценка – критерии: 7-8 правильных ответов – оценка «5» 7-8 правильных ответов – оценка «5» 5-6 правильных ответов – оценка «4» 5-6 правильных ответов – оценка «4» 3-4 правильных ответа – оценка «3» 3-4 правильных ответа – оценка «3» 0-2 правильных ответов– оценка «2» 0-2 правильных ответов– оценка «2»

Тепловые двигатели КПД тепловых двигателей. За и против…

Вопросы, изучаемые на уроке Краткая история развития Т.Д. Краткая история развития Т.Д. Типы тепловых двигателей Типы тепловых двигателей –Двигатель внутреннего сгорания –Паровая турбина –Ракетный двигатель Значение тепловых двигателей Значение тепловых двигателей КПД теплового двигателя КПД теплового двигателя Цикл Карно Цикл Карно Вред наносимый окружающей среде Вред наносимый окружающей среде Уменьшение загрязнений окружающей среды. Уменьшение загрязнений окружающей среды.

Тепловой двигатель Тепловой двигатель - это устройство, превращающее внутреннюю энергию топлива в механическую. Тепловой двигатель - это устройство, превращающее внутреннюю энергию топлива в механическую.

Краткая история. Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. В XVIIв. был изобретён тепловой двигатель, который в последующие годы был усовершенствован, но идея осталась той же. Во всех двигателях энергия топлива переходит сначала в энергию газа или пара, а газ (пар) расширяясь, совершает работу и охлаждается, а часть его внутренней энергии при этом превращается в механическую энергию. К сожалению, коэффициент полезного действия невысок.

Типы тепловых двигателей. Двигатель внутреннего сгорания. Двигатель внутреннего сгорания. Паровая турбина. Паровая турбина. Ракетный двигатель Ракетный двигатель

Двигатель внутреннего сгорания. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ, тепловой двигатель, в котором часть химической энергии топлива, сгорающего в рабочей полости, преобразуется в механическую энергию. По роду топлива различают жидкостные и газовые; по рабочему циклу непрерывного действия, 2- и 4-тактные; по способу приготовления горючей смеси с внешним (напр., карбюраторные) и внутренним (напр., дизели) смесеобразованием; по виду преобразователя энергии поршневые, турбинные, реактивные и комбинированные. Коэффициент полезного действия 0,4-0,5. Первый двигатель внутреннего сгорания сконструирован Э. Ленуаром в 1860.Э. Ленуаром В наше время чаще встречается автомобильный транспорт, который работает на тепловом двигателе внутреннего сгорания, работающем на жидком топливе. Рабочий цикл в двигателе происходит за четыре хода поршня, за четыре такта. Поэтому такой двигатель и называется четырёхтактным. Цикл двигателя состоит из следующих четырёх тактов: 1.впуск, 2.сжатие, 3. рабочий ход, 4.выпуск. Для усиления мощности и лучшей системы обеспеченности равномерности вращения вала, используют 4,8 и более цилиндровых двигателей. Особенно мощные двигатели на теплоходах, тепловозах и др. Для усиления мощности и лучшей системы обеспеченности равномерности вращения вала, используют 4,8 и более цилиндровых двигателей. Особенно мощные двигатели на теплоходах, тепловозах и др.

Изобретатель первого ДВС - Жан Этьен Ленуар ( ) Изобретатель первого ДВС - Жан Этьен Ленуар ( )

Двигатель внутреннего сгорания Двигатель внутреннего сгорания

Карбюраторный ДВС Карбюраторный ДВС

Четырёхтактные ДВС работают на автомобилях и лёгких самолётах. На схеме показаны четыре такта работы двигателя: Четырёхтактные ДВС работают на автомобилях и лёгких самолётах. На схеме показаны четыре такта работы двигателя: Впуск -> Сжатие -> Рабочий ход -> Выпуск Впуск -> Сжатие -> Рабочий ход -> Выпуск

Изобретатель двухтактного двигателя – Рудольф Дизель ( ) Изобретатель двухтактного двигателя – Рудольф Дизель ( )

Дизельный двигатель Дизельный двигатель

Дизельный двигатель является двухтактным Дизельный двигатель является двухтактным

Паровая турбина. В современной технике так же широко применяют и другой тип теплового двигателя. В нём пар или нагретый до высокой температуры газ вращает вал двигателя без помощи поршня, шатуна и коленчатого вала. Такие двигатели называют турбинами. ПАРОВАЯ ТУРБИНА, турбина, преобразующая тепловую энергию водяного пара в механическую работу. Подразделяются на стационарные (напр., на теплоэлектростанции) и транспортные (судовые). Выполняются одно- и многокорпусными (обычно не более 4 корпусов), одновальными (валы всех корпусов на одной оси) и с параллельным расположением 2-3 валов. В Российской Федерации строят паровые турбины мощностью от нескольких к Вт до 1200 МВт. В современных турбинах, для увеличения мощности применяют не один, а несколько дисков, насажанных на общий вал. Турбины применяют на тепловых электростанциях и на кораблях.

Ракетный двигатель РАКЕТНЫЙ ДВИГАТЕЛЬ, реактивный двигатель, не использующий для работы окружающую среду (воздух, воду). Распространены химические ракетные двигатели (разрабатывают и испытывают электрические, ядерные и другие ракетные двигатели). Простейший ракетный двигатель работает на сжатом газе. По назначению различают разгонные, тормозные, управляющие и др. Применяют на ракетах (отсюда название), самолетах и др. Основной двигатель в космонавтике.

Цикл Карно КАРНО ЦИКЛ, обратимый круговой процесс, состоящий из двух изотермических и двух адиабатных процессов; впервые рассмотрен Н. Л. С. Карно (1824) в связи с определением кпд тепловых машин. Кпд Карно цикла n не зависит от свойств рабочего тела (пара, газа и т. п.) и определяется температурами теплоотдатчика Т1 и теплоприемника Т2, n = (Т1- Т2)/Т1. Кпд любой тепловой машины не может быть больше кпд Карно цикла (при тех же Т1 и Т2). круговой процесс круговой процесс

Значение тепловых двигателей Наибольшее значение имеет использование тепловых двигателей на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Наибольшее значение имеет использование тепловых двигателей на тепловых электростанциях, где они приводят в движение роторы генераторов электрического тока. Тепловые двигатели- паровые турбины- устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном- поршневые двигатели внутреннего сгорания; на водном- ДВС и паровые турбины; на ж/д- тепловозы с дизельными установками; в авиации- поршневые, турбореактивные и реактивные двигатели. Тепловые двигатели- паровые турбины- устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном- поршневые двигатели внутреннего сгорания; на водном- ДВС и паровые турбины; на ж/д- тепловозы с дизельными установками; в авиации- поршневые, турбореактивные и реактивные двигатели. Без тепловых двигателей современная цивилизация немыслима. Мы не имели бы в изобилии дешевую электроэнергию и были бы лишены всех двигателей скоростного транспорта.

Вред наносимый окружающей среде Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов. Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается. Во-первых, при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается. Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа. Во-вторых, сжигание топлива сопровождается выделением в атмосферу углекислого газа. В третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. В третьих, при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. А автомобильные двигатели ежегодно выбрасывают в атмосферу два-три тонн свинца. А автомобильные двигатели ежегодно выбрасывают в атмосферу два-три тонн свинца. Выбросы вредных веществ в атмосферу- не единственная сторона воздействия энергетики на природу. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на земле. Одно из направлений, связанное с охраной окружающей среды, это увеличение эффективности использования энергии, борьба за её экономию.

Уменьшение загрязнений окружающей среды. Один из путей уменьшения загрязнения окружающей среды- использование в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород. Один из путей уменьшения загрязнения окружающей среды- использование в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород.

Задача 1 Чему равен максимальный КПД идеального теплового двигателя, если температура нагревателя 455 С, а температура холодильника 273 С? Чему равен максимальный КПД идеального теплового двигателя, если температура нагревателя 455 С, а температура холодильника 273 С?

Задача 2 Тепловой двигатель совершает за цикл работу 100Дж. Какое количество теплоты получено при этом от нагревателя, если КПД равен 20% Тепловой двигатель совершает за цикл работу 100Дж. Какое количество теплоты получено при этом от нагревателя, если КПД равен 20%

Задача 3 КПД идеальной машины 60%, а температура нагревателя 480 С. Какова температура холодильника? Какая часть теплоты, получаемой от нагревателя, уходит в холодильник? КПД идеальной машины 60%, а температура нагревателя 480 С. Какова температура холодильника? Какая часть теплоты, получаемой от нагревателя, уходит в холодильник?

Тепловые двигатели За…Против…