Понятие о звуке Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и.

Презентация:



Advertisements
Похожие презентации
Механические волны Лекцию подготовил Волчков С.Н..
Advertisements

Волновые явления Механические волны Звуковые волны.
Механические колебания и волны. Механические колебания Механические волны.
Презентация по теме: «Механические колебания и волны» Омск 2009 год.
«ВОЛНОВЫЕ ПРОЦЕССЫ» Упругие волны распространение упругих колебаний; распространение упругих колебаний; волна; волна; параметры и уравнения волны; параметры.
В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые.
Колебания и волны Лекция г. 1. План 1.Колебательные процессы. Гармонические колебания. Понятие о спектральном разложении. 2.Дифференциальное уравнение.
Механическая волна Звук Музыкальный тон шум Волновой фронт Волновая поверхность Амплитуда Период Частота Скорость Длина волны Продольные и поперечные.
Волна представляет собой колебания, которые при своем распространении не переносят с собой вещество. Волны переносят энергию из одной точки пространства.
Волна представляет собой колебания, которые при своем распространении не переносят с собой вещество. Волны переносят энергию из одной точки пространства.
МОУ СОШ 2 Презентация по физике Презентация по физике тема: тема: «Механические колебания и «Механические колебания и волны» волны» ст. Курская 2011 год.
МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ. Запиши ответы на вопросы в тетрадь Что такое механические колебания? Какие колебания называются гармоническими? Уравнение гармонических.
Лекция 4 ХАРАКТЕРИСТИКИ АКУСТИЧЕСКОГО ПОЛЯ Рассмотрим плоскую гармоническую волну, распространяющуюся в положительном направлении оси, параметры среды.
МОУ СОШ 107 Презентация по физике Презентация по физике тема: тема: «Механические колебания и «Механические колебания и волны» волны» Челябинск 2009 г.
Механические волны Вступление Если в каком-нибудь месте твердой, жидкой или газообразной среды возбуждены колебания частиц, то вследствие взаимодействия.
Механические колебания и звуковые волны Выполнил ученик 10Б класса Прокопчук Александр Г.Хабаровск Политехнический лицей. Далее.
Автор работы: Старцев Андрей Павлович Ученик 10 класса МОУ Рожковская СОШ Сосновского муниципального района Нижегородской области. Научный руководитель:
Работа выполнена ученицей 10 «б» класса Зенкиной Елизаветой.
Презентация к уроку по физике (11 класс) по теме: 11 класс. Презентация по физике на тему "Волновые явления".
Колебания Выполнила: Васильева Елена Ученица 10 «А» класса.
Транксрипт:

Понятие о звуке Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение звуковым давлением.давлениезвуковым давлением Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разряжения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения. В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

Физические параметры звука Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент и добротность (Q). Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого, то амплитуда уменьшается в е = 2,718 раза, через затухающих колебаний. Уменьшение амплитуды за один цикл характеризуется логарифмическим S = 1/ декрементом. Логарифмический декремент равен отношению периода колебаний ко = T/ : времени затухания

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы. При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.вынужденные колебания

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разряжения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды c Удельное на скорость (с) распространения в ней ультразвуковых волн. Z = акустическое сопротивление измеряется в Пас/м (см) или динс/см3 (СГС); 1 Пас/м = 10-1 дин с/см3. Значение удельного акустического сопротивления среды часто выражается в г/ссм2, причём 1 г/ссм2 = 1 динс/см3. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн. Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через cA. где Р максимальное акустическое f амплитуду колебания частиц: P = 2 давление (амплитуда давления); f частота; с скорость распространения плотность среды; А амплитуда колебания частиц среды. На ультразвука; /2) амплитудное значение давления из расстоянии в половину длины волны ( положительного становится отрицательным, то есть разница давлений в двух точках, /2 пути распространения волны, равна 2Р. Для отстоящих друг от друга на выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м2). Звуковое давление в системе СГС измеряется в дин/см2; 1 дин/см2 = 10-1Па = 10-1Н/м2.

Наряду с указанными единицами часто пользуются внесистемными единицами давления атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98o106 дин/см2 = 0,98o105 Н/м2. Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см2. Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак. Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. f)2 A 2A = (2 Амплитудное значение ускорения (а) определяется выражением: a = Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашел применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях ультразвуковых весах.

Распространение ультразвука Распространение ультразвука это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне. Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний. Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению: V = U sin (2pift + G), где V величина колебательной скорости; U амплитуда колебательной скорости; f частота ультразвука; t время; G разность фаз между колебательной скоростью частиц и переменным акустическим давлением. Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды. fA, U = 2

Дифракция, интерференция При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения. Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет. При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

Интерференция играет важную роль при оценке явлений, возникающих в тканях вокруг ультразвукового излучателя. Особенно большое значение имеет интерференция при распространении ультразвуковых волн в противоположных направлениях после отражения их от препятствия.

Поглощение ультразвуковых волн Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты. Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 63 %). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань 6,8 см; мышечная 3,6 см; жировая и мышечная ткани вместе 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см. Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур. Глубина проникновения ультразвуковых волн Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения. Преломление ультразвуковых волн Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис дерма фасция мышца) будет наблюдаться преломление ультразвуковых лучей. Отражение ультразвуковых волн На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1 0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость окружающие её ткани и ткани воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца надкостница кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны

Медузы и инфразвуки На краю «колокола» у медузы расположены примитивные глаза и органы равновесия слуховые колбочки величиной с булавочную головку. Это и есть «уши» медузы. Однако «слышат» они не просто звуковые колебания, доступные и нашему уху, а инфразвуки с частотой 8 13 герц. Перед штормом усиливающийся ветер срывает гребни волн и захлёстывает их. Каждое такое захлопывание воды на гребне волны порождает акустический удар, создаются инфразвуковые колебания, их-то и улавливает своим куполом медуза. Колокол медузы усиливает инфразвуковые колебания (как рупор) и передаёт на «слуховые колбочки». Шторм разыгрывается ещё за сотни километров от берега, он придет в эти места примерно часов через 20, а медузы уже слышат его и уходят на глубину.акустический удар Нужно отдать должное бионикам, которые создали электронный автоматический аппарат предсказатель бурь, работа которого основана на принципе «инфрауха» медузы. Такой прибор может предупредить о готовящейся буре за 15 часов, а не за два, как обычный морской барометр.

Скорость звука Основная статья: Скорость звукаСкорость звука Скорость звука скорость распространения звуковых волн в среде. Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах. Чем больше плотность, тем больше скорость звука. Скорость звука в любой среде вычисляется по формуле:газахжидкостях где β адиабатическая сжимаемость среды; ρ плотность.адиабатическаясжимаемость

Опыты и демонстрации Для демонстрации стоячих волн звука служит Труба Рубенса. Различие в скоростях распространения звука наглядно, когда вдыхают вместо воздуха гелий, и говорят что либо выдыхая им голос становится выше. Если же использовать тяжелый газ гексафторид серы SF 6, то голос звучит ниже [1].Труба Рубенсагексафторид серы

Громкость звука субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления и частоты звуковых колебаний. Также на громкость звука влияют его тембр, длительность воздействия звуковых колебаний и другие факторы (см. [1], [2] ).звуказвукового давлениячастоты [1] [2] Единицей абсолютной шкалы громкости является сон. Громкость в 1 сон это громкость непрерывного чистого синусоидального тона частотой 1 кГц, создающего звуковое давление 2 мПа. сонкГц мПа

Уровень громкости звука относительная величина. Она выражается в фонах и численно равна уровню звукового давления (в децибелах дБ), создаваемого синусоидальным тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равногромким данному звуку).фонахзвукового давлениядецибелахкГц Зависимость уровня громкости от звукового давления и частоты На рисунке справа изображено семейство кривых равной громкости, называемых также изофонами. Они представляют собой графики стандартизированных (международный стандарт ISO 226) зависимостей уровня звукового давления от частоты при заданном уровне громкости. С помощью этой диаграммы можно определить уровень громкости чистого тона какой-либо частоты, зная уровень создаваемого им звукового давления. Например, если синусоидальная волна частотой 100 Гц создаёт звуковое давление уровнем 60 дБ, то, проведя прямые, соответствующие этим значениям на диаграмме, находим на их пересечении изофону, соответствующую уровню громкости 50 фон, значит, данный звук имеет уровень громкости 50 фон. Изофона "0 фон", обозначенная пунктиром, характеризует порог слышимости звуков разной частоты для нормального слуха.слуха

Термодинамика ударных волн С макроскопической точки зрения ударная волна представляет собой воображаемую поверхность, на которой термодинамические величины среды (которые, как правило, изменяются в пространстве непрерывно) испытывают устранимые особенности: конечные скачки. При переходе через фронт ударной волны меняются давление, температура, плотность вещества среды, а также скорость её движения относительно фронта ударной волны. Все эти величины изменяются не независимо, а связаны с одной- единственной характеристикой ударной волны, числом Маха. Математическое уравнение, связывающее термодинамические величины до и после прохождения ударной волн, называется ударной адиабатой, или адиабатой Гюгонио.термодинамические величины давлениетемператураплотность веществачислом Маха ударной адиабатойадиабатой Гюгонио Ударные волны не обладают свойством аддитивности в том смысле, что термодинамическое состояние среды, возникающее после прохождения одной ударной волн, нельзя получить последовательным пропусканием двух ударных волн меньшей интенсивности.

Происхождение ударных волн Звук представляет собой колебания плотности среды, распространяющиеся в пространстве. Уравнение состояния обычных сред таково, что в области повышенного давления скорость звука (т. е. скорость распространения возмущений) возрастает (т. е. звук является нелинейной волной). Это неизбежно приводит к явлению опрокидывания решений, которые и порождают ударные волны. ЗвукУравнение состояниянелинейной волной В силу этого механизма, ударная волна в обычной среде это всегда волна сжатия. Однако в тех системах, в которых скорость распространения возмущений уменьшается с ростом плотности, будет наблюдаться ударная волна разрежения. Описанный механизм предсказывает неизбежное превращение любой звуковой волны в слабую ударную волну. Однако в повседневных условиях для этого требуется слишком большое время, так что звуковая волна успевает затухнуть раньше, чем нелинейности становятся заметны. Для быстрого превращения колебания плотности в ударную волну требуются сильные начальные отклонения от равновесия. Этого можно добиться либо созданием звуковой волны очень большой громкости, либо механически, путём околозвукового движения объектов в среде. Именно поэтому ударные волны легко возникают при взрывах, при около- и сверхзвуковых движениях тел, при мощных электрических разрядах и т. д.громкостивзрывах

Ударные волны в специальных условиях Ударная волна, путём нагрева среды, может вызвать экзотермическую химическую реакцию, что, в свою очередь, отразится и на свойствах самой ударной волны. Такой комплекс «ударная волна + реакция горения» носит название волны детонации.химическую реакциюдетонации В астрофизических объектах ударная волна может двигаться со скоростями, близкими к скорости света. В этом случае ударная адиабата модифицируется. Ударные волны в замагниченной плазме также обладают своими характерными особенностями. При переходе через разрыв, изменяется также и величинаплазме

ЗВУКОВАЯ КОЛОНКА ЗВУКОВАЯ КОЛОНКА, направленный групповой акустический излучатель в виде линейной цепочки однотипных громкоговорителей (до 8 штук), установленных в общем корпусе. Применяется для озвучивания больших аудиторий, спортплощадок и др.

ЗВУКОВОСПРОИЗВЕДЕНИЕ ЗВУКОВОСПРОИЗВЕДЕНИЕ, осуществляется преимущественно электроакустическим способом (по схеме: фонограмма преобразователь усилитель электрических колебаний громкоговоритель). Различаются в соответствии с видами звукозаписи.