Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва - 2007 Электронный учебный курс написан на основе лекций, читавшихся автором.

Презентация:



Advertisements
Похожие презентации
Динамика – раздел теоретической механики, изучающий механическое движение с самой общей точки зрения. Движение рассматривается в связи с действующими на.
Advertisements

Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Статика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов,
ДИНАМИКА ТОЧКИ ЛЕКЦИЯ 1: ЗАКОНЫ ДИНАМИКИ. УРАВНЕНИЯ ДВИЖЕНИЯ.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
Курс лекций по теоретической механике Динамика (II часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором.
Курс лекций по теоретической механике Кинематика Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для.
ДИНАМИКА. Сила. Принцип суперпозиции сил Масса, плотность Законы динамики : первый закон Ньютона. Инерциальные системы отсчета Законы динамики : второй.
Транксрипт:

Курс лекций по теоретической механике Динамика (I часть) Бондаренко А.Н. Москва Электронный учебный курс написан на основе лекций, читавшихся автором для студентов, обучавшихся по специальностям СЖД, ПГС и СДМ в НИИЖТе и МИИТе ( гг.). Учебный материал соответствует календарным планам в объеме трех семестров. Для полной реализации анимационных эффектов при презентации необходимо использовать средство просмотра Power Point не ниже, чем встроенный в Microsoft Office операционной системы Windows-ХР Professional. Замечания и предложения можно послать по Московский государственный университет путей сообщения (МИИТ) Кафедра теоретической механики Научно-технический центр транспортных технологий

Лекция 1. Введение в динамику. Законы и аксиомы динамики материальной точки. Основное уравнение динамики. Дифференциальные и естественные уравнения движения. Две основные задачи динамики. Примеры решения прямой задачи динамики Лекция 1.

Лекция 1 Динамика – раздел теоретической механики, изучающий механическое движение с самой общей точки зрения. Движение рассматривается в связи с действующими на объект силами. Раздел состоит из трех отделов: Динамика материальной точки Динамика механической системы Аналитическая механика Динамика точки – изучает движение материальной точки с учетом сил, вызывающих это движение. Основной объект - материальная точка – материальное тело, обладающей массой, размерами которого можно пренебречь. Основные допущения: – существует абсолютное пространство (обладает чисто геометрическими свойствами, не зависящими от материи и ее движения. – существует абсолютное время (не зависит от материи и ее движения). Отсюда вытекает: – существует абсолютно неподвижная система отсчета. – время не зависит от движения системы отсчета. – массы движущихся точек не зависят от движения системы отсчета. Эти допущения используются в классической механике, созданной Галилеем и Ньютоном. Она имеет до сих пор достаточно широкую область применения, поскольку рассматриваемые в прикладных науках механические системы не обладают такими большими массами и скоростями движения, для которых необходим учет их влияния на геометрию пространства, время, движение, как это делается в релятивистской механике (теории относительности). Основные законы динамики – впервые открытые Галилеем и сформулированные Ньютоном составляют основу всех методов описания и анализа движения механических систем и их динамического взаимодействия под действием различных сил. Закон инерции (закон Галилея-Ньютона) – Изолированная материальная точка тело сохраняет свое состояние покоя или равномерного прямолинейного движения до тех пор, приложенные силы не заставят ее изменить это состояние. Отсюда следует эквивалентность состояния покоя и движения по инерции (закон относительности Галилея). Система отсчета, по отношению к которой выполняется закон инерции, называется инерциальной. Свойство материальной точки стремиться сохранить неизменной скорость своего движения (свое кинематическое состояние) называется инертностью. Закон пропорциональности силы и ускорения (Основное уравнение динамики - II закон Ньютона) – Ускорение, сообщаемое материальной точке силой, прямо пропорционально силе и обратно пропорционально массе этой точки: или Здесь m – масса точки (мера инертности), измеряется в кг, численно равна весу, деленному на ускорение свободного падения: F – действующая сила, измеряется в Н (1 Н сообщает точке массой 1 кг ускорение 1 м/c 2, 1 Н = 1/9.81 кг-с). Динамика механической системы – изучает движение совокупности материальных точек и твердых тел, объединяемых общими законами взаимодействия, с учетом сил, вызывающих это движение. Аналитическая механика – изучает движение несвободных механических систем с использованием общих аналитических методов. 1

Лекция 1 ( продолжение – 1.2 ) Дифференциальные уравнения движения материальной точки: - дифференциальное уравнение движения точки в векторном виде. - дифференциальные уравнения движения точки в координатном виде. Этот результат может быть получен формальным проецированием векторного дифференциального уравнения (1). После группировки векторное соотношение распадается на три скалярных уравнения: В координатном виде: Используем связь радиуса-вектора с координатами и вектора силы с проекциями: или: Подставим ускорение точки при векторном задании движения в основное уравнение динамики: M(x,y,z) O Естественные уравнения движения материальной точки – получаются проецированием векторного дифференциального уравнения движения на естественные (подвижные) оси координат: или: - естественные уравнения движения точки. M O M Основное уравнение динамики : - соответствует векторному способу задания движения точки. Закон независимости действия сил – Ускорение материальной точки под действием нескольких сил равно геометрической сумме ускорений точки от действия каждой из сил в отдельности: или Закон справедлив для любого кинематического состояния тел. Силы взаимодействия, будучи приложенные к разным точкам (телам) не уравновешиваются. Закон равенства действия и противодействия (III закон Ньютона) – Всякому действию соответствует равное по величине и противоположно направленное противодействие: m1m1 m2m2 2

Две основные задачи динамики: 1. Прямая задача: Задано движение (уравнения движения, траектория). Требуется определить силы, под действием которых происходит заданное движение. 2. Обратная задача: Заданы силы, под действием которых происходит движение. Требуется найти параметры движения (уравнения движения, траекторию движения). Обе задачи решаются с помощью основного уравнения динамики и проекции его на координатные оси. Если рассматривается движение несвободной точки, то как и в статике, используется принцип освобождаемости от связей. В результате реакции связей включаются в состав сил, действующих на материальную точку. Решение первой задачи связано с операциями дифференцирования. Решение обратной задачи требует интегрирования соответствующих дифференциальных уравнений и это значительно сложнее, чем дифференцирование. Обратная задача сложнее прямой задачи. Решение прямой задачи динамики - рассмотрим на примерах: Пример 1. Кабина весом G лифта поднимается тросом с ускорением a. Определить натяжение троса. 1. Выбираем объект (кабина лифта движется поступательно и ее можно рассматривать как материальную точку). 2. Отбрасываем связь (трос) и заменяем реакцией R. 3. Составляем основное уравнение динамики: Определяем реакцию троса: Определяем натяжение троса: При равномерном движении кабины a y = 0 и натяжение троса равно весу: T = G. При обрыве троса T = 0 и ускорение кабины равно ускорению свободного падения: a y = -g Проецируем основное уравнение динамики на ось y: y Пример 2. Точка массой m движется по горизонтальной поверхности (плоскости Oxy) согласно уравнениям: x = a coskt, y = b coskt. Определить силу, действующую на точку. y x x y 1. Выбираем объект (материальную точку). 2. Отбрасываем связь (плоскость) и заменяем реакцией N. 3. Добавляем к системе сил неизвестную силу F. 4. Составляем основное уравнение динамики: 5. Проецируем основное уравнение динамики на оси x,y : Определяем проекции силы: Модуль силы: Направляющие косинусы: Таким образом, величина силы пропорциональна расстоянию точки до центра координат и направлена к центру по линии, соединяющей точку с центром. Траектория движения точки представляет собой эллипс с центром в начале координат: O r Лекция 1 ( продолжение – 1.3 )

Лекция 1 ( продолжение 1.4 ) Пример 3: Груз весом G подвешен на тросе длиной l и движется по круговой траектории в горизонтальной плоскости с некоторой скоростью. Угол отклонения троса от вертикали равен. Определить натяжение троса и скорость груза. 1. Выбираем объект (груз). 2. Отбрасываем связь (трос) и заменяем реакцией R. 3. Составляем основное уравнение динамики: Из третьего уравнения определяем реакцию троса: Определяем натяжение троса: Подставляем значение реакции троса, нормального ускорения во второе уравнение и определяем скорость груза: 4. Проецируем основное уравнение динамики на оси,n, b: Пример 4: Автомашина весом G движется по выпуклому мосту (радиус кривизны равен R) со скоростью V. Определить давление автомашины на мост. 1. Выбираем объект (автомашина, размерами пренебрегаем и рассматриваем как точку). R 2. Отбрасываем связь (шероховатую поверхность) и заменяем реакциями N и силой трения F тр. 3. Составляем основное уравнение динамики: 4. Проецируем основное уравнение динамики на ось n: Отсюда определяем нормальную реакцию: Определяем давление автомашины на мост: Отсюда можно определить скорость, соответствующую нулевому давлению на мост (Q = 0): 4