Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.

Презентация:



Advertisements
Похожие презентации
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ISOLDE, CERN) A. E. Барзах, П. Л. Молканов, М. Д. Селиверстов,
Advertisements

Лазерно-спектроскопические исследования изотопов таллия. I. Аномалия сверхтонкой структуры и возможность изучения распределения ядерной намагниченности.
Исследование запаздывающего деления и сосуществования форм в экспериментах на ISOLDE (изотопы Tl и Po) A.E. Barzakh, D.V. Fedorov, V.S. Ivanov, P.L. Molkanov,
А.В.Акимов, А.Ю.Антонов, А.В.Антошин, П.А.Бак, А.М.Барняков, М.Ф.Блинов, Ю.М.Боймельштейн, Д.Ю.Болховитянов, Ф.А.Еманов, А.Р.Фролов, Р.Х.Галимов, С.М.Гуров,
Лазерная спектроскопия нейтронно-дефицитных изотопов таллия (ПИЯФ и CERN) A. E. Барзах, Ю. M. Волков, В. С. Иванов, K. A. Мезилев, П. Л. Молканов, Ф. В.
Trigger – scintillation counters S1-S Trigger conditions: S1 – to choose a narrow (0.1 mm or less) beam fraction.
ХИГГС-БОЗОН В ЭКСПЕРИМЕНТАХ ATLAS и CMS НА БАК В.А.Щегельский Семинар ОФВЭ и ОТФ 30 мая 2013.
Кластерные особенности легких ядер в процессах релятивистской фрагментации П.И. Зарубин (ОИЯИ)
The reconstruction of coding scheme through errors distributions Lyakhovetskii V.A., Karpinskaya V.Ju*, Bobrova E.V. Pavlov Institute of Physiology of.
AFM-Raman and Tip Enhanced Raman studies of modern nanostructures Pavel Dorozhkin, Alexey Shchekin, Victor Bykov NT-MDT Co., Build. 167, Zelenograd Moscow,
Ю.Ц.Оганесян Лаборатория ядерных реакций им. Г.Н. Флерова Объединенный институт ядерных исследований Пределы масс и острова стабильности сверхтяжелых ядер.
Ionospheric model. Introduction Because of the complicated nature of the ionosphere, there have been numerous approaches for ionospheric modeling. In.
S10-1 PAT318, Section 10, March 2005 SECTION 10 ELEMENT PROPERTIES.
July 23, 2015Refresher Course1 Refresher Course in Chemistry: Highlights of Structure and Reactivity for Todays Chemist TIME RESOLVED SPECTROSCOPY [T.R.S.]:
Capacitance. Capacitance is the ability of a body to store an electrical charge. Any body or structure that is capable of being charged, either with static.
THERMAL MELTING OF VORTEX MOLECULES IN 2D BOSE-EINSTEIN CONDENSATES W. Pogosov and K. Machida Okayama University, Japan 1. Motivation 2. Model 3. Intershell.
Effect of Structure Flexibility on Attitude Dynamics of Modernizated Microsatellite.
Linacs hall 300 MeV driving electron linac Positron linac.
VORTEX MATTER IN ATOMIC BOSE-EINSTEIN CONDENSATES W. V. Pogosov, Institut des NanoSciences de Paris, Universite Paris VI – Pierre et Marie Curie, Paris;
General relativity. General relativity, or the general theory of relativity, is the geometric theory of gravitation published by Albert Einstein in 1916.
Транксрипт:

Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С. Иванов, K. A. Мезилев, П. Л. Молканов, Ф. В. Мороз, С. Ю. Орлов, В. Н. Пантелеев, М. Д. Селиверстов, Д. В. Федоров

IS 466: Identification and systematical studies of the electron-capture delayed fission (ECDF) in the lead region ECDF of 178,180 Tl (Z=81) ISOLDE IS 534: Beta-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive 85 At beams IS 534 (addendum): Laser spectroscopy and shape-coexistence studies with radioactive 79 Au beams

1.Изотопические изменения зарядовых радиусов и сосуществование форм в нейтронно-дефицитных изотопах Tl. 2.Аномалия сверхтонкой структуры у изотопов Tl и возможность изучения распределения ядерной намагниченности. 3.Ядерная спектроскопия 189 Tl и 189 Hg. ИРИС

Scanning the laser frequency of the first/second step of the selective ionisation scheme for a particular isotope (or an isomer) Isotope shift (IS), hyperfine structure (HFS) measurements Measuring FC current, or ToF spectra while scanning the frequency Isotope/isomer shift 1 ppm A,Z A-1,Z Laser Ion Source narrowband laser Laser beams Experiments Mass separation Target Hot Cavity Extractor Ion Source Reaction products (neutral) Ions Protons Target material 60 kV

Beta-Delayed Fission Q EC (A, Z) > B f (A, Z-1) ~

192,194,196 At β DF 192,194,196 Po 186,188 Bi β DF Beta-Delayed Fission N/Z ~ 1.55–1.59 N/Z ~ 1.22–1.31

178 Tl: 0.1 ions/μC/s, 8 fission events 180 Tl: 1111 fission events P βDF ( 178 Tl)=0.15(6)% P βDF ( 180 Tl)=3.2(2)×10 -3 % corresponds to A=80(1)A=100(1) Fragment mass distribution in DF of Tl isotopes (experiment) FWHM 9 amu

Model: BSM(M) Brownian shape motion on five- dimensional (5D) potential energy surfaces in Metropolis random-walk approximation Calculated yields for four Hg isotopes at three excitation energies. For the lighter isotopes the yields become more symmetric. P. Möller, J. Randrup, A. Sierk, Phys. Rev. C 85, (2012) Fragment mass distribution in DF of Tl isotopes and fission barriers for Hg isotopes (theory) B f, exp (model), MeV B f, theor MeV 180 Hg7.5(1.5) Hg~ 79.3 P βDF ( 180 Tl) theor = 2×10 -6 % P βDF ( 180 Tl) exp = 3.2(2)×10 -3 % M. Veselsky et al. Phys. Rev. C 86, (2012)

Development and use of laser-ionized At beams at ISOLDE Determination of optical lines and efficient photoionization scheme. First measurement of the ionization potential of the element At Beta delayed fission of 194,196 At Charge radii measurement for At isotopes

At Photoionization scheme for the radioactive element At Optimal photoionization scheme. Narrow band lasers for 1 st and 2 nd transitions 216 nm 795 nm 532 nm IP

IP (At)= (84) eV Precise determination of the Ionization Potential for the radioactive element At

IS534, May 2012: Mass Distributions Measurements for DF of 194,196 At 180 Tl Energy in Si1 (MeV) Energy in Si2 (MeV) Energy in Si1 (MeV) 194 At 196 At Clear difference in energy (thus, mass) distribution between fission of 180 Hg and 194,196 Po

Shape coexistence and charge radii in Pb region ? 85 At? 2011: Tl isotopes: IS511 ISOLDE and IRIS (Gatchina) Pb ISOLDE, PRL98, (2007) H. De Witte et al. Po ISOLDE, T. Cocolios et al., PRL106, (2011)

IRIS: 30 new 189 Hg γ-lines from 189m Tl decay are unambiguously identified and their relative intensities are determined 2012: Additional nuclear spectroscopic information from Tl isotopes decay ISOLDE: decay schemes for some Tl isotopes are determined

Astatine HFS spectra 1 st step is better for Δ extraction 2 nd step is better for hfs resolution (Q and μ determination) 216 nm 795 nm 532 nm IP

IS534 October 2012: Charge radii of At isotopes

October 2012: IS534 experiment at ISOLDE – Au isotopes Are the light Au isotopes deformed? What are the spins of ground and isomeric states?

IS534: Charge Radii of Au isotopes Deformation jump toward less deformed shapes in the light Au isotopes Shape staggering in 178 Au (large deformation difference between 2 states)

Summary: Charge Radii in Pb region IS/charge radii for 10 At nuclei were measured Back to sphericity in the lightest Au isotopes Magnetic/quadrupole moments will be deduced Large amount of by-product nuclear spectroscopic information on At and Au and their daughter products

1.Измерено асимметричное массовое распределение осколков запаздывающего деления 178 Tl и определена вероятность такого распада. Получены значения барьеров деления для 178,180 Hg. 2.Для исследования ядер At найдена эффективная схема фотоионизации, обнаружено около 20 ранее не известных атомных переходов, впервые определен потенциал ионизации At. 3.Обнаружено запаздывающее деление 196,194 At. Предварительный анализ свидетельствует о его симметричном характере. 4.Измерены изотопические сдвиги и сверхтонкое расщепление для 10 изотопов (изомеров) At на двух переходах, 216 nm и 795 nm, что позволит получить новые данные о μ, Q, δ и деформации этих изотопов (изомеров). 5.Измерены изотопические сдвиги и сверхтонкое расщепление (μ, δ ) для 9 изотопов (изомеров) Au на переходе nm. Впервые обнаружен «обратный скачок деформации» возвращение к сферичности ядер с N

IS534: Hyperfine Structure Scans for 177,179 Au 179 Au narrowband measured (WM) 179 Au 3/2 + calculated 179 Au 1/2 + calculated 177 Au narrowband measured (WM) Ground state spins of 177,179 Au are experimentally determined as 1/2 +

Isomer selectivity enables us to measure masses of 197g,198g At and receive nuclear spectroscopic information for pure g.s. Isomer selectivity for 197,198 At

Windmill System at ISOLDE Annular Si Si pure 50 keV beam from RILIS+ISOLDE Setup: Si detectors from both sides of the C-foil Large geometrical efficiency (up to 80%) 2 fold fission fragment coincidences ff- γ, γ-α, γ-γ, etc coincidences C-foils 20 mg/cm 2 Si detectors 50 keV beam from ISOLDE Si Annular Si ff C-foil MINIBALL Ge cluster A. Andreyev et al., PRL 105, (2010)

R. N. Wolf et al., Nucl. Instr. and Meth. A 686, (2012), S. Kreim et al., INTC-P-299, IS 518 (2011) Multi-reflection time-of-flight mass separator (MR-ToF MS) In-Source Spectroscopy with MR-ToF MS ~1000 revolutions, ~35 ms, m/Δm ~ 10 5

197g 197m g 198m 217 Isotope shift δ A,A : Δσ for different transitions should lie on the straight line with a slope F λ1 / F λ2 King plot for 216 nm and 795 nm lines in At

Why is 1/2 + 1/ Tl 177 Au decay hindered? Plot from A.Andreyev et al., PRC 80, (2009) 1/2 + ~1.6 N, pure sph. 3s 1/2, (as in the heavier Tls) ~1.1 N, (preliminary) mixed/def/triaxial 3s 1/2,/d 3/2

What is the ground state spin of 179 Au: 1/2 +,3/2 + or 5/2 - ? GS+FMA: W.F. Muller et al, PRC 69, (2004) 5.85 MeV 179 Au 183m Tl 53.3 ms RITU: A. Andreyev et al., R35 experiment (+ISOLDE data) M. Venhart et al, PLB 695, 82 (2011) Extensive ISOLDE data for g.s. of 183 Tl are available, analysis underway

What is the ground state spin of 177 Au: 1/2 + or 3/2 + ? GS+FMA: F.G. Kondev et al., PLB 512, 268 (2001) SHIP: A.Andreyev et al., PRC 80, (2009) Why is decay of 1/2 + gs of 181 Tl hindered, HF>3? Extensive ISOLDE data for g.s. of 181 Tl are available, analysis underway

Hyperfine structure anomaly for Au isotopes

Shape Coexistence in the Pb region Pb (Z=82) g.s.: 0p-0h) – spherical Pb (Z=82) g.s j j Protons Neutrons s 1/2 h 9/2 d 3/2 Z=82 Proton pair excitations across Z=82 shell gap (neutrons are spectators): 1 pair excitation: 2p-2h) -oblate 2 pair excitation: 4p-4h) -prolate Pb (Z=82) 0 + prolate A.Andreyev et al. Nature, 405, 430 (2000) 186 Pb 0p-0h 2p-2h 4p-4h Potential Energy Surface for 186 Pb K. Heyde et al., Phys. Rep. 102 (1983) 291 J.L. Wood et al., Phys. Rep. 215 (1992) 101 A. Andreyev et al., Nature 405 (2000) 430 K. Heyde and J. Wood, Review of Modern Physics, 2012

P. Möllers calculations (2D projection of the total 5D picture) : symmetric valley, 90 Zr+ 90 Zr asymmetric valley, 80 Kr+ 100 Ru