Выполнила:Сахаровская Наталья 10 класс. Идет война народная, священная война…Идет война народная, священная война…

Презентация:



Advertisements
Похожие презентации
Всё для фронта, всё для победы! Вклад отечественной физики в великую победу.
Advertisements

"Всё для фронта, всё для победы!" Вклад отечественной физики в Великую Победу ГОУ НПО Профессиональное училище г. Драч Анастасия Сергеевна: учитель.
Вклад советских учёных-физиков в Великую Победу Сарахман И.Д. учитель физики МБОУ СОШ 8 г.Моздока РСО-Алания Учёные-физики фронту.
"Всё для фронта, всё для победы!" Вклад отечественной физики в Великую Победу.
"Всё для фронта, всё для победы!" Вклад отечественной физики в Великую Победу 2010г. МОУ «Апраксинская СОШ»
Реактивная артиллерия Проект Оружие Победы Автор: Копылов Владимир, учащийся 10 класса Новоюрьевской СОШ.
Российские физики в борьбе с фашизмом. Какой ценой ……..
Ядерные катастрофы и оружия. Ученые.. В 1949 году была испытана первая советская атомная бомба. Это позволило СССР сравняться по военной мощи с США, которые.
Петр Леонидович КАПИЦА (9.VII IV. 1984) Из коллекции
Выполнил: Студент гр.Э Симашков Н.С.. Ни для кого не секрет, что где–то лед и не выдерживал, машины проваливались под лед. И тут весомое слово сказали.
Нажми меня Во время боёв в районе Синявина наши войска захватили большой склад стальных баллонов. Учёные предложили превратить их в мощные зажигательные.
"Всё для фронта, всё для победы!" Вклад отечественной физики в Великую Победу Учебный проект по истории Автор: Капшин А. Руководитель: Марущенко О.В. МОУ.
Уже давно закончилась война, Но не для Вас, седые ветераны, И в сердце вашем не зажили раны – Так много унесла с собой она. Мы поздравляем с Днем Победы.
Танки и САУ Проект ОРУЖИЕ ПОБЕДЫ. Авторы работы: Донских Алексей (10 класс), Шуваев Денис (6-б класс) Новоюрьевская С О Ш.
Роль Науки во времена Великой Отечественной войны Выполнил: Ем Виктор Ученик 7 класса «В»
Боевые награды Великой Отечественной войны За подвиги на фронтах Великой Отечественной войны орденами и медалями было награждено более 7 млн. человек.
С.П. Королёв родился в 1906 году. Занимался в Киевском политехническом институте. Учился в Москве в Высшем техническом училище им. Баумана В 1929 году.
Ученые – физики. Над проектом работал: Ученик 9 «А» класса Колташёв Артем.
Физика в блокадном Ленинграде Самодуров Игорь и Онегин Андрей 10 2 МОУ «Лицей 3»
Учёные-физики ??? 1 Жуковский Николай Егорович ( ) выдающийся русский учёный, создатель аэродинамики как науки.
Транксрипт:

Выполнила:Сахаровская Наталья 10 класс

Идет война народная, священная война…Идет война народная, священная война…

Товарищ, ты видишь : над краем родимым Товарищ, ты видишь : над краем родимым Распластанной свастики тень. Распластанной свастики тень. Товарищ, ты слышишь - Товарищ, ты слышишь - сквозь гул орудийный сквозь гул орудийный Надорванный стон деревень. Надорванный стон деревень. Смотри - под фашистской пятою кровавой Смотри - под фашистской пятою кровавой Томятся, как узник в цепях, Томятся, как узник в цепях, И наши луга, и леса, и дубравы, И наши луга, и леса, и дубравы, И наш урожай на полях ! И наш урожай на полях !

Академия наук получила от ЦК КПСС задание немедленно пересмотреть тематику научных и научно - технических работ, ускорить исследования. Вся их деятельность теперь была подчинена трём целям : Академия наук получила от ЦК КПСС задание немедленно пересмотреть тематику научных и научно - технических работ, ускорить исследования. Вся их деятельность теперь была подчинена трём целям : * конструирование новых средств обороны и наступления ; * конструирование новых средств обороны и наступления ; * научная помощь промышленности, производящей оружие и боеприпасы ; * научная помощь промышленности, производящей оружие и боеприпасы ; * изыскание новых сырьевых и энергетических ресурсов, замена дефицитных материалов более простыми. * изыскание новых сырьевых и энергетических ресурсов, замена дефицитных материалов более простыми.

Война сдвинула со своих мест 35 научных учреждений АН СССР, переместились на новые места около 4000 научных сотрудников. К началу 1942 г. учреждения АН размещались в 45 пунктах страны. А ведь нужно было обеспечить не только доставку сложнейших научных приборов и установок, не только их быстрый монтаж и ввод в строй, а также согласованную работу всех научных подразделений. Война сдвинула со своих мест 35 научных учреждений АН СССР, переместились на новые места около 4000 научных сотрудников. К началу 1942 г. учреждения АН размещались в 45 пунктах страны. А ведь нужно было обеспечить не только доставку сложнейших научных приборов и установок, не только их быстрый монтаж и ввод в строй, а также согласованную работу всех научных подразделений. И с этой нелегкой задачей советские ученые с честью справились : благодаря их героическому труду главные физические, химические и технические научные центры начали функционировать чрезвычайно быстро. И с этой нелегкой задачей советские ученые с честью справились : благодаря их героическому труду главные физические, химические и технические научные центры начали функционировать чрезвычайно быстро.

Итак, часть ученых поехала в эвакуацию, чтобы в лабораториях и на исследовательских установках, опираясь на свои знания, создавать разработки, нужные фронту. Лозунг Всё для фронта, всё для Победы! был в те годы был не только приказом, но естественной потребностью почти каждого человека. Итак, часть ученых поехала в эвакуацию, чтобы в лабораториях и на исследовательских установках, опираясь на свои знания, создавать разработки, нужные фронту. Лозунг Всё для фронта, всё для Победы! был в те годы был не только приказом, но естественной потребностью почти каждого человека. Вторая часть людей науки пошла в действующую армию или в Народное ополчение, чтобы сражаться с оружием в руках. Вот что рассказывали участники тех событий. Вторая часть людей науки пошла в действующую армию или в Народное ополчение, чтобы сражаться с оружием в руках. Вот что рассказывали участники тех событий.

Вице – президент (в 70-е гг.XX в) Академии педагогических наук В.Г.Зубов: Вице – президент (в 70-е гг.XX в) Академии педагогических наук В.Г.Зубов: Когда в 1941 г.фашисты напали на нашу страну, я был аспирантом физфака МГУ…Почти все не призванные в армию уходили в Народное ополчение… Я пришел в ополчение рядовым…вскоре был уже инструктором политотдела дивизии. Мы строили оборонительные сооружения под Можайском, Вязьмой, деревне Семлево, что на старой Смоленской дороге….Когда в 1941 г.фашисты напали на нашу страну, я был аспирантом физфака МГУ…Почти все не призванные в армию уходили в Народное ополчение… Я пришел в ополчение рядовым…вскоре был уже инструктором политотдела дивизии. Мы строили оборонительные сооружения под Можайском, Вязьмой, деревне Семлево, что на старой Смоленской дороге…. Не счесть учителей физики, которые, оставив свои классы, пошли воевать. Не счесть учителей физики, которые, оставив свои классы, пошли воевать.

Бывший учитель, а в последствии член – корреспондент Академии педагогических наук, известный специалист в области школьного физического эксперимента Б.С.Зворыкин в 1975 г. вспоминал: Когда началась Великая Отечественная война, я работал учителем физики в 175-ой московской школе. Так как я был радиолюбителем, имевшим довольно большой практический опыт, меня послали на специальные курсы и через 3 месяца,весной 1942 г., я стал командиром радоиовзвода… Мы обеспечивали бесперебойную радиосвязь штаба батальона с ротами, находящимися на переднем крае. Одновременно вели постоянную и очень напряженную учебу… Мы стояли под Волоколамском, затем прошли всю Белоруссию и вышли на север Латвии. Бывший учитель, а в последствии член – корреспондент Академии педагогических наук, известный специалист в области школьного физического эксперимента Б.С.Зворыкин в 1975 г. вспоминал: Когда началась Великая Отечественная война, я работал учителем физики в 175-ой московской школе. Так как я был радиолюбителем, имевшим довольно большой практический опыт, меня послали на специальные курсы и через 3 месяца,весной 1942 г., я стал командиром радоиовзвода… Мы обеспечивали бесперебойную радиосвязь штаба батальона с ротами, находящимися на переднем крае. Одновременно вели постоянную и очень напряженную учебу… Мы стояли под Волоколамском, затем прошли всю Белоруссию и вышли на север Латвии.

А вот воспоминания еще одного известного педагога – московского учителя Я.Ф.Лернера: В 1941 г. я окончил Одесский институт и уже в августе был призван в ряды Красной армии. Пройдя ускоренный курс обучения, я был направлен в Новгородский полк. Начал работу с должности командира взвода топографической разведки. Участвовал в боях на Западном фронте… сражался на Волховском фронт в 1943 – 1944 гг. А вот воспоминания еще одного известного педагога – московского учителя Я.Ф.Лернера: В 1941 г. я окончил Одесский институт и уже в августе был призван в ряды Красной армии. Пройдя ускоренный курс обучения, я был направлен в Новгородский полк. Начал работу с должности командира взвода топографической разведки. Участвовал в боях на Западном фронте… сражался на Волховском фронт в 1943 – 1944 гг. Л.К.Ивашин - педагог 27-ой школы г. Москвы. Служил в войсках ПВО Московского и Северо – Западного фронтов: был начальником радиолокационной станции орудийной наводки. Л.К.Ивашин - педагог 27-ой школы г. Москвы. Служил в войсках ПВО Московского и Северо – Западного фронтов: был начальником радиолокационной станции орудийной наводки.

Ёще до войны в ленинградском Физико-техническом институте (ЛФТИ) под руководством профессора А.П. Александрова группой учёных, в которую входили Б.А. Гаев, П.Р. Степанов, В.Р. И А.Р. Ригели, Ю.С. Лазуркин, были начаты работы, направленные на уменьшении возможности поражения кораблей магнитными минами. В их ходе был создан обмоточный метод размагничивания судов. Заключался он в следующем Ёще до войны в ленинградском Физико-техническом институте (ЛФТИ) под руководством профессора А.П. Александрова группой учёных, в которую входили Б.А. Гаев, П.Р. Степанов, В.Р. И А.Р. Ригели, Ю.С. Лазуркин, были начаты работы, направленные на уменьшении возможности поражения кораблей магнитными минами. В их ходе был создан обмоточный метод размагничивания судов. Заключался он в следующем С помощью положенной на палубу или подвешенной с наружной стороны бортов большой петли 1 из специального кабеля, по которой пропускался электрический ток, вокруг кабеля создавалось искусственное магнитное поле 2 противоположного направления по отношению к собственному магнитному полю 3 корабля; в итоге результирующее магнитное поле судна становилось незначительным и не вызывало срабатывания магнитной мины. Перед самой войной были созданы лишь первые образцы размагничивающих устройств и начата их установка на кораблях. Война требовала быстрого осуществления намеченных мер. С помощью положенной на палубу или подвешенной с наружной стороны бортов большой петли 1 из специального кабеля, по которой пропускался электрический ток, вокруг кабеля создавалось искусственное магнитное поле 2 противоположного направления по отношению к собственному магнитному полю 3 корабля; в итоге результирующее магнитное поле судна становилось незначительным и не вызывало срабатывания магнитной мины. Перед самой войной были созданы лишь первые образцы размагничивающих устройств и начата их установка на кораблях. Война требовала быстрого осуществления намеченных мер.

27 июня 1941 г. Был издан приказ об организации бригад по срочной установке размагничивающих устройств на всех кораблях флота. В их состав входили офицеры, учёные ленинградского Физтеха, инженеры, монтажники. Научным руководителем работ был назначен А.П. Александров. В одну из бригад добровольно вошел физик профессор И.В. Курчатов. 27 июня 1941 г. Был издан приказ об организации бригад по срочной установке размагничивающих устройств на всех кораблях флота. В их состав входили офицеры, учёные ленинградского Физтеха, инженеры, монтажники. Научным руководителем работ был назначен А.П. Александров. В одну из бригад добровольно вошел физик профессор И.В. Курчатов. Бригады размагничивания приступили к выполнению обязанностей : Балтийская – 27 июня, Черноморская – 1 июля, Тихоокеанская – 14 августа. Работа велась при нехватке специалистов, кабеля, оборудования, зачастую под бомбёжками и обстрелами, по жёстко ограниченному графику,- вспоминают её участники В.Р. Регель и Б.А. Ткаченко. Но самоотверженно преодолевая трудности, специалисты уже к августу 1941 г. защитили от магнитных мин врага основную часть боевых кораблей на всех действующих флотах и флотилиях. Это была героическая победа научных знаний и практического мастерства! Бригады размагничивания приступили к выполнению обязанностей : Балтийская – 27 июня, Черноморская – 1 июля, Тихоокеанская – 14 августа. Работа велась при нехватке специалистов, кабеля, оборудования, зачастую под бомбёжками и обстрелами, по жёстко ограниченному графику,- вспоминают её участники В.Р. Регель и Б.А. Ткаченко. Но самоотверженно преодолевая трудности, специалисты уже к августу 1941 г. защитили от магнитных мин врага основную часть боевых кораблей на всех действующих флотах и флотилиях. Это была героическая победа научных знаний и практического мастерства!

БРОНЯ КРЕПКА, И ТАНКИ НАШИ БЫСТРЫ

В 1943г. под руководством инженеров Ж.Я.Котина, А.И.Благонравова, Н.Л.Духова в очень короткие сроки был создан новый тяжелый танк ИС-2 В 1943г. под руководством инженеров Ж.Я.Котина, А.И.Благонравова, Н.Л.Духова в очень короткие сроки был создан новый тяжелый танк ИС-2 Боевая масса, т 46 Экипаж, чел. 4 Длина, мм 9830 Ширина, мм 3070 Высота, мм 2730 Клиренс, мм 420 Броня, мм: Лоб 120 Борт 90 Корма 60 Крыша, днища Башня Скорость (по шоссе), км/ч 37 Запас хода (по шоссе), км 240 Подъем, град. 36 Высота стенки, м 1,0 Ширина, мм рва, м 2,50 Глубина брода, м 1,30 Боевая масса, т 46 Экипаж, чел. 4 Длина, мм 9830 Ширина, мм 3070 Высота, мм 2730 Клиренс, мм 420 Броня, мм: Лоб 120 Борт 90 Корма 60 Крыша, днища Башня Скорость (по шоссе), км/ч 37 Запас хода (по шоссе), км 240 Подъем, град. 36 Высота стенки, м 1,0 Ширина, мм рва, м 2,50 Глубина брода, м 1,30

Создание ИС-2 считалось выдающимся научно-техническим достижением. Эта машина была признана одной из самых удачных и совершенных в истории военной техники тех лет.

На базе танка ИС-2 было создано несколько тяжёлых самоходных установок, в том числе ИСУ-152.эта машина совмещала в себе мощь пулевого орудия, подвижность и надёжную броневую защиту. Её прозвали «царь-пушка» На базе танка ИС-2 было создано несколько тяжёлых самоходных установок, в том числе ИСУ-152.эта машина совмещала в себе мощь пулевого орудия, подвижность и надёжную броневую защиту. Её прозвали «царь-пушка»

БМ-13 Именем песни народ окрестил новое оружие, наводившее ужас на врага ракетные минометы Именем песни народ окрестил новое оружие, наводившее ужас на врага ракетные минометы

Пусть фриц помнит русскую катюшу, Пусть фриц помнит русскую катюшу, Пусть услышит, как она поет: Пусть услышит, как она поет: Из врагов вытряхивает души, Из врагов вытряхивает души, А своим отвагу придает! А своим отвагу придает! За рекою грянула «Катюша»…

Н.И. Тихомиров В.А. Артемьев Б.С.Петропавловский Г.Э. Лангемак И.Т. Клейменов

Установка БМ-13 образца 1941г. Представляла собой ферму из 16 направляющих (8 балок), на которой располагались 132- миллиметровые реактивные снаряды массой 42,5кг. Она монтировалась на трехосном грузовом автомобиле ЗИС-6. За несколько секунд установка выпускала 16 мощных снарядов (с каждой балки по 2 снаряда: один шел сверху, другой – снизу).

Установка БМ-13 в бою

Во всех военных операциях с лета 1944г. реактивная артиллерия уже выступала как мощное средство подавления врага. И в этом – творческий подвиг создателей этого оружия.

Осажденный врагом город на Неве- Ленинград (ныне Санкт-Петербург) Для жителей нашей страны в период времени были. Жестокие бомбежки, разрывы снарядов, отсутствие продовольствия, нормы хлеба сокращены до 250г - рабочим и 125 г - служащим. Жителям города предстояло вынести новое тяжкое испытание: ударили морозы; в начале января 1942г. они доходили до -35°С. Полностью замерз водопровод, вышла из строя канализация, не работало центральное отопление; подача электроэнергии была строго лимитирована, остановился городской транспорт. Но город жил, трудился! И все это совершалось усилием воли. Моральный дух ленинградцев, людей науки, был необычайно крепок.

Научный сотрудник ленинградского Физико- технического института Павел Павлович Кобеко попросил поручить ему изучение этого вопроса. Он разработал методику регистрации колебаний льда в разных условиях. Надо было создать аппаратуру, которая могла бы фиксировать все, что происходит со льдом в разную погоду под влиянием различных статических и динамических нагрузок, причем регистрировать быстро, непрерывно и автоматически. Научный сотрудник ленинградского Физико- технического института Павел Павлович Кобеко попросил поручить ему изучение этого вопроса. Он разработал методику регистрации колебаний льда в разных условиях. Надо было создать аппаратуру, которая могла бы фиксировать все, что происходит со льдом в разную погоду под влиянием различных статических и динамических нагрузок, причем регистрировать быстро, непрерывно и автоматически. С трудом, проявляя чудеса изобретательности, нашли материалы для изготовления приборов. Исследования проходили в темноте, под обстрелом, на ветру в тридцатиградусную стужу. Изучали пластическую деформацию и вязкость льда, его проломы, способность выдерживать нагрузки, изменение амплитуды колебаний. С трудом, проявляя чудеса изобретательности, нашли материалы для изготовления приборов. Исследования проходили в темноте, под обстрелом, на ветру в тридцатиградусную стужу. Изучали пластическую деформацию и вязкость льда, его проломы, способность выдерживать нагрузки, изменение амплитуды колебаний.

Все это выявило ряд закономерностей: степень деформации льда зависит от скорости движения транспорта- это был главный вывод; критической оказалась скорость, близкая к 35 км/ч. Особенно опасной становилась ситуация, когда транспорт шел со скоростью, близкой к скорости распространения ледовой волны; в этом случае даже одна машина могла вызвать резонанс и разрушение ледового покрова. Все это выявило ряд закономерностей: степень деформации льда зависит от скорости движения транспорта- это был главный вывод; критической оказалась скорость, близкая к 35 км/ч. Особенно опасной становилась ситуация, когда транспорт шел со скоростью, близкой к скорости распространения ледовой волны; в этом случае даже одна машина могла вызвать резонанс и разрушение ледового покрова. На основе полученных результатов ученые выработали правила безопасности движения по ладожской трассе; составили таблицы и формулы для расчета допустимой скорости передвижения с разными грузами. Эти таблицы и правила были напечатаны, размножены и строго соблюдались на всем фронте. Ледовые аварии прекратились. «Дорога жизни» функционировала. На основе полученных результатов ученые выработали правила безопасности движения по ладожской трассе; составили таблицы и формулы для расчета допустимой скорости передвижения с разными грузами. Эти таблицы и правила были напечатаны, размножены и строго соблюдались на всем фронте. Ледовые аварии прекратились. «Дорога жизни» функционировала.

Наши учёные сделали многое для развития оборонной промышленности. И вот некоторые примеры их деятельности: Расширили выпуск самолётов, танков, боеприпасов, для изготовления которых требовалось много жидкого кислорода, помогли работы физика, академика П.Л.Капицы. Взяв за основу холодильный цикл низкого давления, он создал кислородную установку, в которой сжатый воздух разделялся на составляющие его компоненты (азот и кислород), а потом кислород путём расширения в турбодетандере охлаждался. Для действия этой установки требовалось в сотни раз меньшее сжатие воздуха, чем обычно: всего (4,5-6) 10 Па. Её производительность (2 т/ч) в 4-6 раз превышала производительность существовавших установок. Расширили выпуск самолётов, танков, боеприпасов, для изготовления которых требовалось много жидкого кислорода, помогли работы физика, академика П.Л.Капицы. Взяв за основу холодильный цикл низкого давления, он создал кислородную установку, в которой сжатый воздух разделялся на составляющие его компоненты (азот и кислород), а потом кислород путём расширения в турбодетандере охлаждался. Для действия этой установки требовалось в сотни раз меньшее сжатие воздуха, чем обычно: всего (4,5-6) 10 Па. Её производительность (2 т/ч) в 4-6 раз превышала производительность существовавших установок.

Академик В.А.Трапезников сконструировал автомат для точного развешивания пороха, которым наполняли гильзы снарядов; этот автомат заменял 16 рабочих. Его другой автомат (предназначенный для обмера гильз), выполнял работу 30 рабочих. Академик В.А.Трапезников сконструировал автомат для точного развешивания пороха, которым наполняли гильзы снарядов; этот автомат заменял 16 рабочих. Его другой автомат (предназначенный для обмера гильз), выполнял работу 30 рабочих. Много сотен тысяч сделанных артиллерийских снарядов, считавшихся браком, были признаны годными после их проверки физиками Я.С.Шуром и С.В.Вонсовским при помощи магнитного дефектоскопа. Брак оказался ложным: учёным удалось сэкономить для страны дефицитный труд и материалы. Много сотен тысяч сделанных артиллерийских снарядов, считавшихся браком, были признаны годными после их проверки физиками Я.С.Шуром и С.В.Вонсовским при помощи магнитного дефектоскопа. Брак оказался ложным: учёным удалось сэкономить для страны дефицитный труд и материалы. Оптические методы контроля продукции, Оптические методы контроля продукции, предложенные физиками и внедрённые на десятках оборонных заводов, сокращали время на проведение анализов в 25 раз, а расход реактивов уменьшали в 20 раз.

Для улучшения реактивного оружия, в то время ещё очень не совершенного, работы вели в 2 направлениях: модернизировали ракеты (снаряды) и конструировали новые пусковые устройства. Для улучшения реактивного оружия, в то время ещё очень не совершенного, работы вели в 2 направлениях: модернизировали ракеты (снаряды) и конструировали новые пусковые устройства. В результате в снаряды стало возможно закладывать вдвое больший заряд (разработка группы учёных во главе с Ю.Э.Эндеком); были сконструированы 16-, 48- и 72- зарядные установки на железнодорожных платформах (их использовали для обороны столицы); В результате в снаряды стало возможно закладывать вдвое больший заряд (разработка группы учёных во главе с Ю.Э.Эндеком); были сконструированы 16-, 48- и 72- зарядные установки на железнодорожных платформах (их использовали для обороны столицы); Сделали 24-зарядную установку, смонтированную на шасси лёгких танков Сделали 24-зарядную установку, смонтированную на шасси лёгких танков (работа группы специалистов во главе с В.А.Тимофеевым); (работа группы специалистов во главе с В.А.Тимофеевым);

Был выяснен (благодаря трудам учёных Института химической физики профессоров Я.Б.Зельдовича и Ю.Б.Харитонова) механизм горения топлива в реактивном снаряде (в условиях небольшого объёма и камеры с отверстием – соплом). Эти работы помогли выбрать наиболее выгодный режим внутренней баллистики снаряда, перейти к употреблению более дешёвых пороховых смесей; Был выяснен (благодаря трудам учёных Института химической физики профессоров Я.Б.Зельдовича и Ю.Б.Харитонова) механизм горения топлива в реактивном снаряде (в условиях небольшого объёма и камеры с отверстием – соплом). Эти работы помогли выбрать наиболее выгодный режим внутренней баллистики снаряда, перейти к употреблению более дешёвых пороховых смесей; Для увеличения дальности полёта Для увеличения дальности полёта реактивного снаряда эти учёные реактивного снаряда эти учёные предложили удлинить заряд, предложили удлинить заряд, использовать более эффективные топлива или две одновременно работающие камеры сгорания; работающие камеры сгорания;

Создали вращающиеся реактивные снаряды (организовав вытекание пороховых газов через маленькое отверстие в утолщенной части снаряда, Создали вращающиеся реактивные снаряды (организовав вытекание пороховых газов через маленькое отверстие в утолщенной части снаряда, создающее реактивную силу, поворачивающую снаряд); поворачивающую снаряд); это позволило увеличить кучность огня в 3 раза, а площадь рассеивания снарядов уменьшить в 7 раз!

Капица, Петр Леонидович ( )

Капица Петр Леонидович ( ), российский физик, один из основателей физики низких температур и физики сильных магнитных полей, академик АН СССР (1939), дважды Герой Социалистического Труда (1945, 1974). Капица Петр Леонидович ( ), российский физик, один из основателей физики низких температур и физики сильных магнитных полей, академик АН СССР (1939), дважды Герой Социалистического Труда (1945, 1974). В в научной командировке в Великобритании. Организатор и первый директор ( и с 1955) Института физических проблем АН СССР. Открыл сверхтекучесть жидкого гелия (1938). Разработал способ сжижения воздуха с помощью турбодетандера, новый тип мощного сверхвысокочастотного генератора. Обнаружил, что при высокочастотном разряде в плотных газах образуется стабильный плазменный шнур с температурой электронов К. Государственная премия СССР (1941, 1943), Нобелевская премия (1978). Золотая медаль имени Ломоносова АН СССР (1959). В в научной командировке в Великобритании. Организатор и первый директор ( и с 1955) Института физических проблем АН СССР. Открыл сверхтекучесть жидкого гелия (1938). Разработал способ сжижения воздуха с помощью турбодетандера, новый тип мощного сверхвысокочастотного генератора. Обнаружил, что при высокочастотном разряде в плотных газах образуется стабильный плазменный шнур с температурой электронов К. Государственная премия СССР (1941, 1943), Нобелевская премия (1978). Золотая медаль имени Ломоносова АН СССР (1959).

Петр Леонидович Капица родился 9 июля 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Петр сначала учился год в гимназии, а затем в Кронштадтском реальном училище. Петр Леонидович Капица родился 9 июля 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Петр сначала учился год в гимназии, а затем в Кронштадтском реальном училище. В 1912 году Капица поступил в Санкт-Петербургский политехнический институт. В том же году в "Журнале русского физико-химического общества" появилась первая статья Капицы. В 1912 году Капица поступил в Санкт-Петербургский политехнический институт. В том же году в "Журнале русского физико-химического общества" появилась первая статья Капицы. В 1918 году Иоффе основал в Петрограде один из первых в России научно- исследовательских физических институтов. Закончив в том же году Политехнический институт, Петр был оставлен в нем в должности преподавателя физико-механического факультета. В 1918 году Иоффе основал в Петрограде один из первых в России научно- исследовательских физических институтов. Закончив в том же году Политехнический институт, Петр был оставлен в нем в должности преподавателя физико-механического факультета. В 1920 году Капица и Н.Н. Семенов разработали метод определения магнитного момента атома, используя в нем взаимодействие пучка атомов с неоднородным магнитным полем. В 1920 году Капица и Н.Н. Семенов разработали метод определения магнитного момента атома, используя в нем взаимодействие пучка атомов с неоднородным магнитным полем. В мае 1921 года Капица приехал в Англию. Он попал в лабораторию Резерфорда. В мае 1921 года Капица приехал в Англию. Он попал в лабораторию Резерфорда. По поручению Резерфорда Капица занялся изучением альфа-частиц. Он должен был определить импульс альфа-частицы. По поручению Резерфорда Капица занялся изучением альфа-частиц. Он должен был определить импульс альфа-частицы. Темой его докторской диссертации, которую он защитил в Кембридже в 1922 году, было "Прохождение альфа-частиц через вещество и методы получения магнитных полей". Темой его докторской диссертации, которую он защитил в Кембридже в 1922 году, было "Прохождение альфа-частиц через вещество и методы получения магнитных полей".

В 1923 году он стал доктором наук. В 1924 году он был назначен заместителем директора Кавендишской лаборатории по магнитным исследованиям, а в 1925 году стал членом Тринити-колледжа. В 1928 году Академия наук СССР присвоила Капице ученую степень доктора физико-математических наук и в 1929 году избрала его своим членом-корреспондентом. В следующем году Капица становится профессором-исследователем Лондонского королевского общества. В 1923 году он стал доктором наук. В 1924 году он был назначен заместителем директора Кавендишской лаборатории по магнитным исследованиям, а в 1925 году стал членом Тринити-колледжа. В 1928 году Академия наук СССР присвоила Капице ученую степень доктора физико-математических наук и в 1929 году избрала его своим членом-корреспондентом. В следующем году Капица становится профессором-исследователем Лондонского королевского общества. Создал уникальное оборудование для измерения температурных эффектов, связанных с влиянием сильных магнитных полей на свойства вещества привело Капицу к изучению проблем физики низких температур. Чтобы достичь таких температур, необходимо было располагать большим количеством сжиженных газов. Разрабатывая новые холодильные машины и установки, Капица использовал весь свой талант физика и инженера. Вершиной его творчества в этой области явилось создание в 1934 году необычайно производительной установки для сжижения гелия, который кипит или сжижается при температуре около 4,3 градусов Кельвина. Создал уникальное оборудование для измерения температурных эффектов, связанных с влиянием сильных магнитных полей на свойства вещества привело Капицу к изучению проблем физики низких температур. Чтобы достичь таких температур, необходимо было располагать большим количеством сжиженных газов. Разрабатывая новые холодильные машины и установки, Капица использовал весь свой талант физика и инженера. Вершиной его творчества в этой области явилось создание в 1934 году необычайно производительной установки для сжижения гелия, который кипит или сжижается при температуре около 4,3 градусов Кельвина. За время своего тринадцатилетнего пребывания в Англии Капица несколько раз возвращался в Советский Союз, чтобы прочитать лекции, навестить мать и провести каникулы на каком-нибудь русском курорте. В конце лета 1934 года Капица приехал в Советский Союз - обратно его не выпустили. В 1935 году Капице предложили стать директором вновь созданного Института физических проблем Академии наук СССР. Капица почти год отказывался от предлагаемого поста. За время своего тринадцатилетнего пребывания в Англии Капица несколько раз возвращался в Советский Союз, чтобы прочитать лекции, навестить мать и провести каникулы на каком-нибудь русском курорте. В конце лета 1934 года Капица приехал в Советский Союз - обратно его не выпустили. В 1935 году Капице предложили стать директором вновь созданного Института физических проблем Академии наук СССР. Капица почти год отказывался от предлагаемого поста.

На установке, доставленной в Москву из Кавендишской лаборатории, Капица продолжал исследования в области сверхсильных магнитных полей. Ему удалось обнаружить уменьшение вязкости жидкого гелия при охлаждении до температуры ниже 2,17 К, при которой он переходит в форму, называемую гелием-2. Утрата вязкости позволяет ему беспрепятственно вытекать через мельчайшие отверстия и даже взбираться по стенкам контейнера, как бы "не чувствуя" действия силы тяжести. Отсутствие вязкости сопровождается также увеличением теплопроводности. На установке, доставленной в Москву из Кавендишской лаборатории, Капица продолжал исследования в области сверхсильных магнитных полей. Ему удалось обнаружить уменьшение вязкости жидкого гелия при охлаждении до температуры ниже 2,17 К, при которой он переходит в форму, называемую гелием-2. Утрата вязкости позволяет ему беспрепятственно вытекать через мельчайшие отверстия и даже взбираться по стенкам контейнера, как бы "не чувствуя" действия силы тяжести. Отсутствие вязкости сопровождается также увеличением теплопроводности. В 1945 году в Советском Союзе активизировались работы по созданию ядерного оружия. Капица был смещен с поста директора института и в течение восьми лет находился под домашним арестом. В 1945 году в Советском Союзе активизировались работы по созданию ядерного оружия. Капица был смещен с поста директора института и в течение восьми лет находился под домашним арестом.

Работая в пятидесятые годы над созданием микроволнового генератора, ученый обнаружил, что микроволны большой интенсивности порождают в гелии отчетливо наблюдаемый светящийся разряд. Измеряя температуру в центре гелиевого разряда, он установил, что на расстоянии в несколько миллиметров от границы разряда температура изменяется примерно на два миллиона градусов Кельвина. Это открытие легло в основу проекта термоядерного реактора с непрерывным подогревом плазмы. Работая в пятидесятые годы над созданием микроволнового генератора, ученый обнаружил, что микроволны большой интенсивности порождают в гелии отчетливо наблюдаемый светящийся разряд. Измеряя температуру в центре гелиевого разряда, он установил, что на расстоянии в несколько миллиметров от границы разряда температура изменяется примерно на два миллиона градусов Кельвина. Это открытие легло в основу проекта термоядерного реактора с непрерывным подогревом плазмы. В 1965 году, впервые после более чем тридцатилетнего перерыва, Капица получил разрешение на выезд из Советского Союза в Данию для получения Международной золотой медали Нильса Бора. 17 октября 1978 года Шведская академия наук направила из Стокгольма Петру Леонидовичу Капице телеграмму о присуждении ему Нобелевской премии по физике за фундаментальные исследования в области физики низких температур. В 1965 году, впервые после более чем тридцатилетнего перерыва, Капица получил разрешение на выезд из Советского Союза в Данию для получения Международной золотой медали Нильса Бора. 17 октября 1978 года Шведская академия наук направила из Стокгольма Петру Леонидовичу Капице телеграмму о присуждении ему Нобелевской премии по физике за фундаментальные исследования в области физики низких температур.

Абрам Федорович Иоффе Советский физик, академик АН СССР (1920; член-корреспондент 1918), вице-президент АН СССР (1926 – 1929, 1942 – 1945), Герой Социалистического Труда (1955) лауреат Сталинской премии (1942), Ленинской премии (посмертно, 1961) Герой Социалистического Труда (1955) В честь Абрама Иоффе был назван кратер Иоффе на Луне и Научно- исследовательское судно «Академик Иоффе». Сталинской премии1942 Ленинской премии 1961Герой Социалистического Труда1955кратер ИоффеЛуне«Академик Иоффе»Сталинской премии1942 Ленинской премии 1961Герой Социалистического Труда1955кратер ИоффеЛуне«Академик Иоффе»

Термоэлектрические генераторы А.Ф. Иоффе впервые выдвинул идею о том, что с помощью полупроводников можно сделать серьезный и реальный шаг на пути превращения тепловой (в том числе и солнечной) энергии в электрическую. Первое практическое применение полупроводниковых термоэлементов было осуществлено в СССР в период Великой Отечественной войны под непосредственным руководством А.Ф. Иоффе. Это был, ныне широко известный, «партизанский котелок» - термопреобразователь на основе термоэлементов из SbZn и константа. Такое устройство, несмотря на сравнительно невысокий к.п.д. (1,5-2%), с успехом обеспечивало электропитанием ряд портативных партизанских радиостанций. Примерно в это же время в США велись работы по созданию небольших переносных термоэлектрогенераторов военного назначения на основе теллуристого свинца. А.Ф. Иоффе впервые выдвинул идею о том, что с помощью полупроводников можно сделать серьезный и реальный шаг на пути превращения тепловой (в том числе и солнечной) энергии в электрическую. Первое практическое применение полупроводниковых термоэлементов было осуществлено в СССР в период Великой Отечественной войны под непосредственным руководством А.Ф. Иоффе. Это был, ныне широко известный, «партизанский котелок» - термопреобразователь на основе термоэлементов из SbZn и константа. Такое устройство, несмотря на сравнительно невысокий к.п.д. (1,5-2%), с успехом обеспечивало электропитанием ряд портативных партизанских радиостанций. Примерно в это же время в США велись работы по созданию небольших переносных термоэлектрогенераторов военного назначения на основе теллуристого свинца.

Принцип действия термоэлектрического генератора Он заключается в том что в замкнутой цепи из двух разнородных материалов, если места контактов поддерживаются при разных температурах. Эффект возникает вследствие зависимости энергии свободных электронов или дырок от температуры. В местах контактов различных материалов заряды переходят от проводника, где они имели более высокую энергию, в проводник с меньшей энергией зарядов. Если один контакт нагрет больше, чем другой, то разность энергий зарядов между двумя веществами больше на горячем контакте, чем на холодном, в результате чего в замкнутой цепи возникает ток. Он заключается в том что в замкнутой цепи из двух разнородных материалов, если места контактов поддерживаются при разных температурах. Эффект возникает вследствие зависимости энергии свободных электронов или дырок от температуры. В местах контактов различных материалов заряды переходят от проводника, где они имели более высокую энергию, в проводник с меньшей энергией зарядов. Если один контакт нагрет больше, чем другой, то разность энергий зарядов между двумя веществами больше на горячем контакте, чем на холодном, в результате чего в замкнутой цепи возникает ток.

«Партизанский котелок» ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ: Электрическая мощность при напряжении на нагрузке 12 В, Вт Время приведения в действие, ч, не более ,3 Масса, кг Габаритные размеры, мм х250х240

В условиях, удаленных от постоянного электроснабжения, генератор может быть использован для: 1. ПОДЗАРЯДКИ АККУМУЛЯТОРОВ мобильного телефона, радиостанции, видеокамеры, эхолота, навигатора, ноутбука, автомобиля. В условиях, удаленных от постоянного электроснабжения, генератор может быть использован для: 1. ПОДЗАРЯДКИ АККУМУЛЯТОРОВ мобильного телефона, радиостанции, видеокамеры, эхолота, навигатора, ноутбука, автомобиля. 2. ОБЕСПЕЧЕНИЯ ЭЛЕКТРОЭНЕРГИЕЙ МАЛОМОЩНЫХ ПОТРЕБИТЕЛЕЙ - радиоприемника, магнитофона, миникомпьютера, телевизора. 2. ОБЕСПЕЧЕНИЯ ЭЛЕКТРОЭНЕРГИЕЙ МАЛОМОЩНЫХ ПОТРЕБИТЕЛЕЙ - радиоприемника, магнитофона, миникомпьютера, телевизора. 3. ЛОКАЛЬНОГО ОСВЕЩЕНИЯ ИСТОЧНИКАМИ ТЕПЛА МОГУТ СЛУЖИТЬ газовая или бензиновая горелка, керогаз, примус, печь с конфорками, угли костра и любые другие источники с открытым пламенем. 3. ЛОКАЛЬНОГО ОСВЕЩЕНИЯ ИСТОЧНИКАМИ ТЕПЛА МОГУТ СЛУЖИТЬ газовая или бензиновая горелка, керогаз, примус, печь с конфорками, угли костра и любые другие источники с открытым пламенем.

Крупный ученый- физик, общественный деятель, человек, без малого 30 лет возглавлявший Институт атомной энергии им. И.В.Курчатова и более 10 лет Академию наук СССР.

Противоминная защита кораблей. Над этой тематикой А.П.Александров и руководимая им группа начала работать еще в 1936 г. по запросу высшего военного руководства страны. Основания предполагать, что в ходе предстоящей войны для уничтожения флота противник будет использовать помимо торпед донные магнитные мины, были: подобные мины еще во время гражданской войны применялись англичанами на Северной Двине против советской Беломорской флотилии. Поначалу А.П.Александров и его коллеги этого не знали и проработали данный вопрос самостоятельно. После лабораторных экспериментов начались опыты на реальных кораблях. Были изготовлены магнитометры, с помощью которых можно было измерять индукцию магнитного поля. С помощью таких магнитометров в 1937 г. на эсминцах «Яков Свердлов», «Артем» и на лидере «Ленинград» были проведены измерения магнитных полей и опыты по их компенсации. Так к началу Великой Отечественной войны была решена задача по защите кораблей от магнитных мин противника. В результате во время войны на магнитных минах не подорвался ни один из наших кораблей, размагниченных по методу, предложенному в ЛФТИ.

Развитие отечественной атомной энергетики. Во-первых, именно усилиями Александрова и его коллег удалось решить задачу получения из урана плутония в масштабах, необходимых для решения вполне конкретных задач оборонного плана. В то время, о котором идет речь, плутоний в ничтожных количествах получали в СССР на ускорителях, однако нескольких тысяч атомов было совершенно недостаточно для изготовления реальной атомной бомбы. И после того, как в июне 1948 г. в нашей стране был пущен первый промышленный реактор (его разработка осуществлялась под руководством И.В.Курчатова и Н.А.Доллежаля), руководимый А.П.Александровым коллектив разработал проект реактора гораздо большей мощности, после чего было решено построить серию таких реакторов.Развитие отечественной атомной энергетики. Во-первых, именно усилиями Александрова и его коллег удалось решить задачу получения из урана плутония в масштабах, необходимых для решения вполне конкретных задач оборонного плана. В то время, о котором идет речь, плутоний в ничтожных количествах получали в СССР на ускорителях, однако нескольких тысяч атомов было совершенно недостаточно для изготовления реальной атомной бомбы. И после того, как в июне 1948 г. в нашей стране был пущен первый промышленный реактор (его разработка осуществлялась под руководством И.В.Курчатова и Н.А.Доллежаля), руководимый А.П.Александровым коллектив разработал проект реактора гораздо большей мощности, после чего было решено построить серию таких реакторов. Реакторы, которые были построены под руководством А.П.Александрова, давали в год порядка 120 кг плутония – количество, вполне достаточное для изготовления двух десятков атомных бомб, равных той, что была взорвана в августе 1945 г. в Хиросиме.Реакторы, которые были построены под руководством А.П.Александрова, давали в год порядка 120 кг плутония – количество, вполне достаточное для изготовления двух десятков атомных бомб, равных той, что была взорвана в августе 1945 г. в Хиросиме.

Судьба Анатолия Петровича сложилась так, что президентом Академии наук СССР он стал в 1975 г., сменив на этом посту М.В.Келдыша. В это время Александрову было уже 72 года. Оставил же он этот пост в 1986 г., в возрасте 83 лет, после Чернобыльской катастрофы, ставшей для ученого личной трагедией. А.П.Александров скончался в начале 1994г.

Курчатов Игорь Васильевич

Академик АН СССР (1943). Четырежды лауреат Сталинской премии (1942, 1949, 1951, 1954) и лауреат Ленинской премии (1957). Трижды Герой Социалистического Труда (1949, 1951, 1954). Награжден пятью Орденами Ленина и двумя Орденами Трудового Красного Знамени, медалями «За победу над Германией», «За оборону Севастополя», удостоен Большой Золотой медали им. М. В. Ломоносова, Золотой медали им. Л.Эйлера Академии наук СССР, Серебряной медали Мира имени Жолио-Кюри. Обладатель «Грамоты Почетного гражданина Советского Союза» (1949). Академик АН СССР (1943). Четырежды лауреат Сталинской премии (1942, 1949, 1951, 1954) и лауреат Ленинской премии (1957). Трижды Герой Социалистического Труда (1949, 1951, 1954). Награжден пятью Орденами Ленина и двумя Орденами Трудового Красного Знамени, медалями «За победу над Германией», «За оборону Севастополя», удостоен Большой Золотой медали им. М. В. Ломоносова, Золотой медали им. Л.Эйлера Академии наук СССР, Серебряной медали Мира имени Жолио-Кюри. Обладатель «Грамоты Почетного гражданина Советского Союза» (1949).

Игорь Васильевич Курчатов выдающийся советский физик, «отец» советской атомной бомбы. Академик, основатель и первый директор Института атомной энергии с 1943 г. по 1960 г., главный научный руководитель атомной проблемы в СССР, один из основоположников использования ядерной энергии в мирных целях.

Свою научную деятельность Курчатов начал с изучения свойств диэлектриков, а вскоре открыл новое физическое явление - сегнетоэлектричество. Курчатов одним из первых в СССР приступил к изучению физики атомных ядер. Под его руководством был сооружен первый в Москве циклотрон (1944), первый в Европе атомный реактор (1946), созданы первая советская атомная бомба (1949), первая в мире термоядерная бомба (1953), первая в мире промышленная атомная электростанция (1954), первый в мире атомный реактор для подводных лодок (1958) и атомных ледоколов (Атомный ледокол «Ленин», 1959), крупнейшая установка для проведения исследований по осуществлению регулируемых термоядерных реакций (1958).

Вавилов С. И. - академик, член-корреспондент Академии наук СССР, трижды лауреат Государственной премии, автор более 150 научно-популярных работ

Во время войны Во время Великой Отечественной войны Физический институт Академии Наук СССР руководителем которого был Вавилов С. И., был эвакуирован в Казань. Ученые занимались оптическими прицелами для артиллерийской стрельбы и бомбометания, перископами и другой военной техникой. Во время Великой Отечественной войны Физический институт Академии Наук СССР руководителем которого был Вавилов С. И., был эвакуирован в Казань. Ученые занимались оптическими прицелами для артиллерийской стрельбы и бомбометания, перископами и другой военной техникой. В 1943 г. за успешную работу по развитию отечественной оптико- механической промышленности Вавилов был награжден орденом Ленина, а за работы по люминесценции и квантовым флуктуациям света был удостоен Государственной премии второй степени. В 1943 г. за успешную работу по развитию отечественной оптико- механической промышленности Вавилов был награжден орденом Ленина, а за работы по люминесценции и квантовым флуктуациям света был удостоен Государственной премии второй степени.

В наше мирное время ученые продолжают Вносить свой вклад в оборону нашей страны Для укрепления мощи нашей державы. В 2007 году весь мир отмечал необычный юбилей -60-летие Автомата Калашникова. Автоматы этой системы состоят в армиях 55 государств выпускаются промышленностью 12 стран.

Победная весна !

Салют Победы, прогремевший 9 мая 1945 г., венчал не только подвиг тех, кто с оружием в руках в смертельной схватке с врагом отстоял свободу и независимость нашей Отчизны. Он гремел и в честь тех, кто варил сталь, точил снаряды, строил танки и самолёты, кто ковал оружие победы, чья трудовая доблесть была сродни доблести воинской, фронтовой. И среди тех, кто ковал это оружие, в первых рядах стояли учёные и конструкторы. Благодаря их знаниям, полёту творческой мысли и неустанному труду рождались в небывало короткие сроки проекты новой боевой техники, непрерывно совершенствовалось производство, выполняющее заказы фронта.

Советская промышленность выпустила за годы войны 137 тыс. самолётов, 104 тыс. танков и САУ, 488 тыс. орудий; В январе1945г. мы имели в 2,8 раза больше танков и САУ, чем гитлеровцы, в 7,4 раза больше самолётов! В ходе войны было проведено не просто оснащение техникой нашей многомиллионной армии, но и её полное перевооружение; таких фактов история до этого не знала!

С ДНЁМ ПОБЕДЫ ! Мы не забудем всех тех, кто с оружием в руках на полях сражений и в глубоком тылу отстоял свободу и независимость нашей Родины. Мы не забудем всех тех, кто создавал вооружение, делал открытия, выполнял исследования – это ученые-физики, конструкторы, исследователи, инженеры, техники.