ПРИМЕНЕНИЕ ПОЛИМЕРНЫХ МАТЕРИАЛОВ Сильнолегированные квазиметаллические полимеры антистатические покрытия ( 10 -9 10 -5 Ом -1 ·см -1. В частности, антистатический.

Презентация:



Advertisements
Похожие презентации
И солнечные батареи ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛИ СТУДЕНТЫ 3-ЕГО КУРСА ГРУППЫ ЗУБЕНКО А.А. и ПОЯРКОВ Р.А.
Advertisements

P-i-n-фотодиоды Выполнила: студентка группы Глазнева Н.А.
Устройство полевого транзистора Полевой транзистор - это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей,
Фотодиод Выполнила: студентка группы Степанова К.В.
Киевский национальный университет имени Тараса Шевченко Радиофизический факультет Изготовление, свойства и применение пленок ITO Л.В.Ищук, доцент кафедры.
Выполнили студенты группы Филин П.Н. Силантьев А.А. Сорокин А.Б.
Типы полевых транзисторов 1. с изолированным затвором - МДП - транзисторы - МНОП – элементы памяти - МДП – транзисторы с плавающим затвором - Приборы.
Фотоприемники: фотосопротивления, фотодиоды, фототранзисторы Зелемоткин А.В.
Выполнили студенты группы Никитин Н.Н. Дроздов А. В.
Работу выполнили: Красяков Антон Тидякин Юрий Группа
Презентация по теме: «Полупроводниковые диоды» Выполнили: Бармин Р.А. Гельзин И.Е.
Электрический ток в полупроводниках.
Фотоприемники Ермилова Регина Фёдорова Юлия 1. Фотоприемники Полупроводниковые приборы, регистрирующие оптическое излучение, преобразующие оптический.
Выполнили: Миков А.Г., Пронин Е.Х. Руководитель: Гуртов В.А. Полевые Транзисторы 01 Старт !
ФОТОПРИЁМНИКИ И СОЛНЕЧНЫЕ БАТАРЕИ. Фотодио́д приёмник оптического излучения, который преобразует попавший на его фоточувствительную область свет в электрический.
Полупроводниковыми или электропреобразовательными называются приборы, действие которых основано на использовании свойств полупроводников. K полупроводникам.
Полупроводниковые лазеры. Полупроводниковым лазером называют оптоэлектронное устройство, генерирующее когерентное излучение при пропускание через него.
МДП транзисторы Стефанович Т.Г.
«Электрический ток в различных средах» Выполнили: Кирдеева Е.С. Пасик А.И., ученики 10 класса А МОУ СОШ 31 Г.Иркутска, 2010 год.
Полупроводниковые диоды на основе p - n - переходов и барьеров Шоттки Доклад выполнили: Студенты гр , Гончарова Е. Е., Зинько М. В.
Транксрипт:

ПРИМЕНЕНИЕ ПОЛИМЕРНЫХ МАТЕРИАЛОВ Сильнолегированные квазиметаллические полимеры антистатические покрытия ( Ом -1 ·см -1. В частности, антистатический слой из полианилина защищает компьютерные диски), электромагнитные экраны (в микроволновом диапазоне достаточно иметь проводимость покрытия порядка Ом -1· см -1, такие полимеры представляют интерес для антирадарных покрытий в авиации), литография и др. В электрохимически легированных полимерах процесс легирования и делегирования может управляться внешним напряжением, что используется для создания легких акку- муляторных батарей и различных медицинских приборов. нелегированные полимеры (полупроводники) полимерный (а значит гибкий) полевой транзистор, полимерные фотоприемники, солнечные элементы. Разрабатываются полностью полимерные интегральные схемы, которые могут заменить в некоторых случаях (например, в кодовых электронных замках) кремниевые микросхемы. К «ярким» применениям можно отнести бурно развивающееся в настоящее время направление полимерные светодиоды (LED). Преимуществами являются легкость и пластичность а также низкая температура приготовления и в результате более дешевое сырьё.

Электрохимическое легирование На рис показан процесс зарядки и разрядки батареи на основе полимера в качестве анода (р-тип полимер), Li катода (металл с низкой работой выхода) и электролита (раствор диссоциированной соли LiClO4). В процессе зарядки полимер, например ПА, втягивает в себя ионы ClO4-, которые, располагаясь между цепями, стимулируют процесс легирования полимерных цепей дырками. Ионы Li+ попадают в Li электрод, где нейтрализуются электронами. В процессе зарядки максимально возможная концентрация ионов около 7ат. % (1% легирования в час).. Полимер/Li батарея. а – процесс зарядки, б – процесс разряда батареи.

В процессе разряда батареи ионы ClO4- и Li+ движутся обратно в электролит. Процесс разряда идет медленно (из-за малой скорости движения ионов) до определенного критического напряжения (2,5 в) в противном случае Li+ ионы будут проникать в полимер, легируя его электронами.. Батареи на основе полипиррола и полианилина уже изготавливаются промышленностью, разрабатываются также на основе ПА, политиофена, полипарафенилена. Заметным преимуществом полимерных батарей является малый вес и большое напряжение разомкнутой цепи, что дает высокую плотность энергии и облегчает конструкцию. Недостатком является малая плотность тока (такие батареи можно использовать в микроцепях). Необходимо отметить также ряд медицинских применений электрохимически легированных полимеров, например, полимерные зонды, способные впрыскивать лекарство в нужный орган при приложении напряжения.

Полимерная электроника Полимерные фотодиоды. Для изготовления легких и пластичных полимерных фотодиодов и солнечных элементов необходимо чтобы структура имела два важных свойства: высокиий коэффициент поглощения ( в видимой и ближней ИК области спектра, соотвествующей солнечному спектру) и высокую эффективность разделения зарядов ( время разделения зарядов должно быть меньше времен их излучательной и безизлучательной рекомбинации). Органические материалы (полимеры, олигомеры, различные смеси) интересны для применения в солнечных элементах вследствие их дешевизны и технологичности. Однако они заметно отличаются от неорганических материалов по своим электронным свойствам. 1.При фотовозбуждении в органике создаются Экситоны, энергия связи которых ~100 мэВ, что в 10 раз больше чем в неорганике. 2.Транспорт носителей происходит по локализованным состояниям, а не по разрешенным зонам, что существенно уменьшает подвижность. 3.Коэффициент поглощения очень высок (10 5 см -1 в голубой и зеленой областях спектра), что позволяет использовать тонкие пленки меньше 100 нм толщиной. 4.Материалы нестабильны по отношению к присутствию кислорода и воды. 5.Как квази-одномерные полупроводники имеют сильно анизотропные электрические свойства.

Рис Барьер Шоттки между металлом и n- ПА без смещения: а – до контакта; б– после контакта Для разделеня фотогенерируемых экситонов необходимо создать барьер. Им может быть контакт полиацетилена ПА с металлами с различной работой выхода m. Работа выхода ПА относительно вакуума составляет S ~4,5 эВ. Если m S образуется барьер Шоттки, высота барьера равна разности работ выхода ( m - pa ). Ширина области обеднения Wd в ПА составляет около 1000Å. Это означает, что при толщине полимерного слоя d Wd – диод Шоттки.

. В дальнейшем стали изготавливать структуры с полимерными р-п переходами, содержащие р и п органические полупроводники. На рис. Показан полимерный многослойный фотодиод, содержащий производную полифенилевинилена в качестве донорного слоя и производную политиофена в качестве акцепторного слоя, в этом приборе в режиме разомкнутой цепи достигается ~4.8 %. Многослойный фотодиод, содержащий производную полифенилевинилена (MEH-CN-PPV) в качестве донорного слоя и производную политиофена (POPT) в качестве акцепторного слоя

Основным фактором, ограничивающим квантовый выход является малая длина диффузии экситона (1-10 нм). Поэтому сейчас рассматриваются другие однослойные приборы, в фоточувствительном слое содержится однородная смесь органических веществ (например, С 60 в полимерной матрице). Показана схематическая зонная диаграмма такого обьемного гетероперехода. При появлении экситона происходит активная диссоциация на положительно заряженный носитель на доноре (полимер) и отрицательный – на акцепторе (С 60 ). Если расстояние между такими обьемными Д-А гетеропереходами сравнимо с длиной диффузии экситона, то велика вероятность, что он достигнет этой границы и диссоциирует.

–В заключение приведем таблицу, сравнивающую основные параметры солнечных элементов на основе Si, аморфного Si и органики.

Первый полевой транзистор на основе ПА был создан в 1980 гг., его структура и характеристики показаны на рис. Он состоял из неорганических контактов, оксидного слоя, полупроводниковым слоем был транс ПА р-типа. Сопоставляя полученные характеристики с теоретическими можно получить важный параметр полимера, который характеризует его быстродействие – подвижность инжектированных носителей ( ). Для первого транзистора значения были достаточно малы ~ см 2 /В сек и частота переключения ~ /L 2 (где L- длина канала) составляла 100 кГц. Особенностью данного транзистора является его способность модулировать оптическое пропускание (поскольку при инжекции дырок возникает солитонная полоса поглощения).. Полевой транзистор на основе полиацетилена, его ВАХ и спектр поглощения в зависимости от смещения.. Полимерные транзисторы

Такая технология использовалась для изготовления полевых транзисторов на других полимерах и олигомерах. Для определения подвижности носителей используется линейная часть ВАХ,. Кроме того значение подвижности может быть получено из режима насыщения, когда V SD >V G. I SD =W/LμC(V G -V t ) 2

В дальнейшем в 1994 г. был создан полностью полимерный транзистор. Технология его приготовления очень дешева и проста, она основана на технике spin coating – капля полимерного раствора помещается на подложку, которая быстро вращается, формируя тонкую полимерную пленку. Далее применяется либо печатная технология, либо фотолитография. Компанией Philips уже изготовлен полностью полимерный чип площадью 27 мм 2 с минимальным размером деталей 5мкм. Скорость обработки информации с помощью таких интегральных схем составляет бит/сек. Этот параметр пока мал, чтобы использовать такие схемы в компьютерах, однако достаточен для использования в кодовых замках, электронных ярлыках для товаров в магазинах и др.

Органичеcкие светодиоды В настоящее время на освещение (лампы накаливания, флуоресцентные лампы) тратится 20% производимой электроэнергии. Светодиоды (СД) сберегут 50% электроэнергии. СД можно сделать из неорганических веществ (Si, GaAs, GaP, GaAs/AlGaAs ), а также из органических материалов (молекул и полимеров). рост эффективности преобразования электрической энергии в световую (лм/Вт), связанный с развитием СД. неорганические СД на основе GaAs появились в начале 60-х, и их эффективность постоянно растет (что связано с развитием структур с квантовыми ямами и точками). Органические светодиоды – ОСД (OLED) появились относительно недавно, но уже достигли эффективности преобразования сравнимой с лучшими неорганическими СД

цена каждого люмена освещения для красных СД –0.06$ и 0.2$- для белых СД. Отметим, что цена освещения флуоресцентными лампами 0.01$ за люмен. Преимуществом ОСД является их способность излучать белый свет (подбирается соответствующая смесь молекул, излучающих в разных областях спектра), а также низкая цена и возможность получать большие поверхности, покрытые ОСД (светящиеся панели и стены). Кроме того, развитие ОСД связано с их возможным применением в плоских цветных дисплеях. В частности, фирмой Кодак сообщается о дисплеях с активной матрицей, состоящей из тонкопленочных транзисторов (поли-Si) и ОСД. Эти дисплеи оказываются тоньше и экономичнее, чем жидкокристаллические. Органические светодиоды можно разделить на два класса OMLED и PLED. OMLED обычно обозначают светодиод сделанный из малых органических молекул – низкомолекулярных соединений (в отличие от полимерного СД- PLED, сделанного на основе высокомолекулярных полимеров ).

Развитие исследований органической электролюминесценции относится к 1980 с работы Tang, Van Slyke, которые продемонстрировали эффективную электро- люминесценцию вакуумно распыленной пленки Alq3, помещенной между дырочным транспортным слоем ароматического диамина (TDP) и электронным транспортным слоем (PBD). Все слои наносятся с помощью вакуумного распыления. Оксид индий-олова (In SnO 2 - ITO) использовался как прозрачный электрод с высокой работой выхода (φ~4,7eV), инжектирующий дырки на, а слой Mg-Ag (или другие металлы с малой работой выхода φ~2-3eV) как электрод, инжектирующий электроны. Зонная структура одного из молеклярных СД показана на рис. Alq3+краситель – излучающий слой, его толщина - 20 нм, TAD- дырочный транспортный слой, Alq- электронный транспортный слой. Общая толщина 0.1 мкм., приложенное напряжение в. Молекулярные светодиоды

в спин независимых процессах экситон может быть сформирован с триплетной и синглетной спиновой конфигурацией в отношении 3:1, можно ожидать, что 75% электронно- дырочных пар сформируют триплетные экситоны, которые не рекомбинируют излучательно, и весь внутренний квантовый выход ограничен 25% Современные молекулярные СД работают при низких напряжениях 2,5 – 3 В имеют внешний квантовый выход 4-7% процентов и яркость кд/м 2 ( флуоресцентные лампы кд/м 2 ), эффективность 10 лм/ватт, время работы часов.. Синглетное (S) и триплетное (T) состояние экситона. Сплошные линии – излучательная рекомбинация, пунктир – безизлучательная

Полимерные светодиоды (PLED). Структура (а) и зонная схема (б) однослойного полимерного СД. Нижняя незаполненная молекулярная -орбиталь PPV (LUMO) соответствует краю зоны проводимости, верхняя заполненная (HOMO) – краю валентной зоны.

спектр люминесценции сдвинут в красную область по сравнению со спектром поглощения, два пика указывают на экситонную люминесценцию (энергия связи экситона 60 мэВ) и поляронную полосу (энергия связи полярона 100 мэВ.). Кроме PPV в полимерных СД используется ряд других полимеров (среди них есть и растворимые), Полимерные LED имеют внешний квантовый выход от 4 до 20% (что сравнимо с соответствующими параметрами кристаллических светодиодов), эффективность 10 лм/вт, яркость кд/м 2, время жизни до 5000 часов и излучают во всем видимом диапазоне, смеси полимеров и малых красителей могут излучать белый свет. Спектр поглощения, фотолюминесценциии и электролюминесценции для PPV

В настоящее время разработаны светящиеся дорожные знаки, плоские дисплеи в различных приборах. В ближайшее время, по-видимому, станут реальностью плоские ТВ экраны на основе полимерных LED, внутренние стены помещений, светящиеся белым светом, и многое другое. Причины большого коммерческого потенциала органических СД (как молекулярных, так и полимерных) следующие: они могут быть произведены быстро, дешево и в больших количествах; с помощью добавления красителей могут работать во всех областях спектра; низкие рабочие напряжения –до 10 В; широкий угол обзора (по сравнению с ЖК мониторами); быстрый фотоответ; легкость конструкции; высокая эффективность излучения