Моделирование динамики живых систем с использованием суперкомпьютерных технологий Г.В.Осипов (ННГУ)

Презентация:



Advertisements
Похожие презентации
Автор: Автор: Страковский Даниил Научный руководитель: Научный руководитель: Симаков Е.Е., учитель математики, информатики и ИКТ.
Advertisements

СИСТЕМА МОДЕЛИРОВАНИЯ И ОТОБРАЖЕНИЯ ПРОХОЖДЕНИЯ СИГНАЛОВ ПО ПОВЕРХНОСТИ СЕРДЦА Руководитель к. т. н. Авербух В. Л. Студент гр. ФтМ Белова А. И.
М.Л. Цымблер, Л.Б. Соколинский Южно-Уральский государственный университет (Челябинск) Организация систем хранения данных на базе вычислительных кластеров.
ОБЩИЕ ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ НИЖЕГОРОДСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ПО РАЗВИТИЮ РАБОТ В ОБЛАСТИ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ Высокопроизводительные вычислительные.
Об организации подготовки по параллельному программированию в Уфимском государственном авиационном техническом университете Р.К. Газизов УГАТУ, кафедра.
А.А. ЖДАНОВ, М.В. КАРАВАЕВ, А.Н. ЧЕРНОДУБ Программный инструмент 4GN для разработки интеллектуальных систем на основе бионического метода «Автономного.
Моделирование поведения взаимодействующих агентов в среде с ограничениями Юданов А.А., студент 525 гр. Научный руководитель: к.ф.-м.н. Бордаченкова Е.А.
1. Cведения о нейронах и искусственных нейросетях.
Моделирование динамики твердых тел на GPU Выполнили: Гриднев Максим Машинский Леонид Присивко Вячеслав гр. 3057/2.
Классификация систем План I.Классификация системы II.Сложность системы.
Программная система для изучения и исследования параллельных методов решения сложных вычислительных задач Нижегородский государственный университет им.
УТКИН Денис Михайлович ЗОЛЬНИКОВ Владимир Константинович УТКИН Денис Михайлович МОДЕРНИЗИРОВАННАЯ МЕТОДИКА ПРОЕКТИРОВАНИЯ СЛОЖНЫХ БЛОКОВ ПРОГРАММНО-ТЕХНИЧЕСКИХ.
Использование нейронных сетей для прогнозирования изменений на фондовом рынке Михаил Бондаренко 14 August
Архитектуры высокопроизводительных программных комплексов для моделирования сложных систем С.В. Ковальчук, И.О. Варвалюк НИИ Наукоемких компьютерных технологий,
Практические аспекты биологии. Методы биологических исследований. Практические аспекты биологии. Методы биологических исследований.
«Дискуссии на тему «Может ли машина мыслить?» уже давно сошли со страниц газет и журналов. Скептики устали ждать, когда же сбудутся обещания энтузиастов.
Биофизика мышечного сокращения. Кинематика и динамика вращательного движения. Колебательное движение. Механические волны. Акустика.
Выполнили студенты 2 курса кафедры Физиологии человека и животных: Абрамов Евгений и Голикова Екатерина.
2006 Методы и параллельные алгоритмы идентификации моделей сложных систем. Санкт-Петербургский Государственный университет информационных технологий, механики.
Нижегородский государственный университет им. Н.И.Лобачевского Факультет Вычислительной математики и кибернетики Об одном подходе к решению задачи поиска.
Транксрипт:

Моделирование динамики живых систем с использованием суперкомпьютерных технологий Г.В.Осипов (ННГУ)

Нелинейная динамика и суперкомпьютерные вычисления Школа теории колебаний академика А.А.Андронова Качественные методы исследования динамики систем Математическое моделирование Суперкомпьютерные вычисления

Живые системы Кардиосети (сердечная ткань, целое сердце) Нейронные сети (участки мозг, целый мозг)

1. Сердце. Суперзадача – создание « виртуального сердца» Электрическая активность Механическая активность Сосуды Реальная геометрия Влияние нервной ситемы …

Personalized Virtual Hearts for Personalized Arrhythmia Treatment Персональная модель Информа ция о заболева нии Базовая 3Д Модель Пациент Расчет Лечение

Нормальный ритм и сердечные аритмии Волны электрической активности распространяются в сердечной ткани. Небольшая область - группа клеток, называемая пейсмейкерными, обеспечивает генерацию импульсов, необходимых для обеспечения нормального ритма сердца. А когда происходит пауза в распространении, это означает, что среда готовится к проведению следующей волны возбуждения. Этот ритм повторяется сотни раз каждый час.

Лаборатория электрофизиологии и моделирования сердца

Эксперименты с культурами сердечных клеток. Метод: Phase Contrast Imaging photo photo - Микроскоп (слева) - Культура клеток, наблюдаемая в микроскоп (справа) - Аппаратура реагирует на изменение фазы колебаний клеток - Белый цвет – клетка совершает колебания, черный цвет – клетка не двигается

Модели одной клетки Hodgkin-Huxley (1952) Hodgkin-Huxley (1952) FitzHugh-Nagumo (1960,1961) FitzHugh-Nagumo (1960,1961) Beeler-Reuter (1977) Beeler-Reuter (1977) Luo-Rudy (1991,1994,2000) Luo-Rudy (1991,1994,2000) Ten Tusscher and Co. (2003) Ten Tusscher and Co. (2003) Zhang (2004) Zhang (2004) Maltsev-Lokatta(2010) Maltsev-Lokatta(2010) Grandi (2010) Grandi (2010) …

Модели среды Смешанные среды (автоколебательные, возбудимые и пассивные элементы) Мультидоменные модели Сложная геометрия

Модель Луо-Руди I Na = G Na m 3 h j (V – E Na ) I si = G si d f (V – E si (V,c)) I K = G K x x i (V) (V – E K ) I K1 = G K1 K 1i (V) (V – E K1 ) I Kp = G Kp Kp(V) (V – E K1 ) I b = G b (V – E b ) dg i /dt = i (V) (1 – V) – i (V) V dc/dt = –10 –4 I si (V, c, d, f )+0.07(10 –4 – c) Управляющие параметры: G na, G si, G K, G K1,I stimulus dV/dt = –1/C (I Na +I si +I K +I K1 +I Kp +I b + I stimulus )

Возбудимая клетка (кардиомиоцит) Зависимость от G si

Автоколебательная клетка (пейсмекерная клетка синусного узла) (G K1 =0)

pacemakermyocyte fibroblast Модель Коля для фибробластов

Сети элементов

Вычислительная сложность экспериментов Для моделирования необходимо считать изменение миллиардов переменных! Большие длительности проводимых экспериментов. Необходимо проводить эксперименты большое число раз в широком диапазоне изменения параметров Необходимость применения суперкомпьютерных технологий

Суперкомпьютерный кластер ННГУ - Пиковая производительность 2.7 TFLOPS - Общий объем оперативной памяти 256 Gb - 64 вычислительных узла - CPU: 2xIntel XEON 5150 Dual Core (4x2.66 Ghz cores) - RAM: 4Gb DDR2 Был разработан параллельный алгоритм с использованием специализированного для данной задачи метода интегрирования - время вычисления конкретной задачи (в часах) от числа процессов - зеленый - ускорение, получаемое при использовании параллельных вычислений (в разах) - синий 14 (25)

Использование специального алгоритма интегрирования для сокращения времени обмена данными между процессами при распараллеливовании (Qu Z., Garfinkel A. An advanced algorithm for solving partial differential equation in cardiac conduction: IEEE Transactions on biomedical engineering, 1999). Использование специального алгоритма интегрирования для сокращения времени обмена данными между процессами при распараллеливовании (Qu Z., Garfinkel A. An advanced algorithm for solving partial differential equation in cardiac conduction: IEEE Transactions on biomedical engineering, 1999). Создание параллельной программы с использованием MPI. Создание параллельной программы с использованием MPI. Виртуальная топология процессов Виртуальная топология процессов Функция обмена данными между процессами; MPI_Sendrecv(…). Функция обмена данными между процессами; MPI_Sendrecv(…). Функция сбора и сохранения данных; MPI_Gather(…). Функция сбора и сохранения данных; MPI_Gather(…). Описание алгоритма

Результаты моделирования Кластерные вычисления (MPI) + Параллельные вычисления на машинах с общей памятью (Intel TBB)

Волны в синусном узле

2. Нейросети (Центр интеллектуальных систем и робототехники) Последовательная активность Адаптивное поведение Задача: Используя принципы функционирования мозга животных, создадим искусственную нейронную сеть

Модель адаптивного поведения агента на основе нейрофизиологической теории функциональных систем

Адаптация мобильного робота в неизвестном окружении - Робот должен зарядить батарею ; - Зарядка произойдет, если робот дойдет до красного цилиндра - Красного цилиндра сначала нет, он появится, если робот дойдет до зеленого цилиндра

Обучение Процесс хаотического поиска

Финальные шаги обучения Полностью обученный агент

Спасибо за внимание Литература. 1.Chaos, 2007,2008,2009, Physical Review E, 2009, EPL, 2009,2010.

Мобильный робот E-Puck

Параллельные вычисления на машинах с общей памятью (Intel TBB)