I ВВЕДЕНИЕ : Основные цели Задачи Целевые группы проекта План реализации проекта Ожидаемые результаты.

Презентация:



Advertisements
Похожие презентации
Ядерный реактор.. Что такое ядерный реактор? Ядерный реактор устройство, предназначенное для организации управляемой самоподдерживающейся цепной реакции.
Advertisements

Ядерный реактор, устройство в котором проистекает управляемая цепная ядерная реакция с выделением тепла. В основном эти устройства используются для выработки.
Цепная ядерная реакция 11 класс Подготовил: Савков Д. учитель Антикуз Е.В.
Т.И.Лебедева, Проверим домашнее задание! Когда и кем было открыто деление ядер урана при бомбардировке их нейтронами? Почему деление ядра может.
Презентация к уроку по физике на тему: Атомные электростанции
Радиоактивность (естественная и искусственная) Правило смещения.
Выполнил: Любимцев Николай ученик 9 «Б» класса МОУ-лицей 21 г.Иваново.
Презентация по физике. Тема: Цепная реакция деления ядер урана. Класс: 9 «б»
Ядерный реактор. Преобразование внутренней энергии атомных ядер в электрическую энергию
Схема работы ядерного реактора ? Защита Регулирующие стержни Отражатель Насос Теплоноситель (замедлитель) Вода нагревается в активной зоне за счет внутренней.
Ядерные реакции ЯДЕРНЫЕ РЕАКЦИИ – это превращения атомных ядер в результате взаимодействия друг с другом или какими-либо элементарными частицами. Для осуществления.
Атомные электростанции подготовила:. Атомная электростанция (АЭС) ядерная установка для производства энергии в заданных режимах и условиях применения,
Ядерный реактор
Ядерные реакции Помаскин Юрий Иванович МОУ СОШ 5 г. Кимовск yuri
Атомная Электростанция. Схематическое устройство гетероге нного реактора на тепловых нейтронах 1 управляющий стержень; 2 биологическая защита; 3 теплоизоляция;
Физика Физика 9 класс 9 класс. Деление ядер урана при бомбардировке их нейтронами было от­крыто в 1939 г. немецкими учеными Отто Ганом и Фрицем Штрассманом.
Ядерный реактор Ядерный реактор - устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Ядерный.
В 30 странах мира эксплуатируется 194 атомные электростанции с 435 энергоблоками общей электрической мощностью МВт. 69 энергоблоков находятся.
МОУ СОШ 30 Ядерные реакции Физика атомного ядра Автор: Пащенко И. В.
Автор проекта : студент гр. 185 по профессии «Мастер сельскохозяйственного производства» Митягин Дмитрий Руководитель : Корнева Е.М., преподаватель с.
Транксрипт:

I ВВЕДЕНИЕ : Основные цели Задачи Целевые группы проекта План реализации проекта Ожидаемые результаты

II Основная часть : Реакторы на быстрых нейтронах – научный доклад: Блок 1. «Общая информация» Типы ядерных реакторов Деление ядер урана Цепная реакция Принцип действия атомного реактора. Блок 2. «Реакторы на быстрых нейтронах» РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ В ФЕДЕРАЛЬНОЙ ЦЕЛЕВОЙ ПРОГРАММЕ «ЯДЕРНЫЕ ЭНЕРГОТЕХНОЛОГИИ НОВОГО ПОКОЛЕНИЯ НА ПЕРИОД ГОДОВ НА ПЕРСПЕКТИВУ ДО 2020 ГОДА» ПЕРСПЕКТИВЫ ВНЕДРЕНИЯ РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ В СТРУКТУРУ АТОМНОЙ ЭНЕРГЕТИКИ РОССИИ РАЗВИТИЕ РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ В МИРЕ Конструкция реакторной установки БН-600 ЗАДАЧИ ТОПЛИВООБЕСПЕЧЕНИЯ БЫСТРЫХ НАТРИЕВЫХ РЕАКТОРОВ

ОПЫТ И РЕШЕНИЯ ПО ВЫВОДУ ИЗ ЭКСПЛУАТАЦИИ РЕАКТОРОВ НА БЫСТРЫХ НЕЙТРОНАХ С НАТРИЕВЫМ ТЕПЛОНОСИТЕЛЕМ ОПЫТ ЭКСПЛУАТАЦИИ, МОДЕРНИЗАЦИИ И ПРОДЛЕНИЯ РЕСУРСА ЭНЕРГОБЛОКА БН-600 БЕЛОЯРСКОЙ АЭС ПРОЕКТ РЕАКТОРА БН-800 РАСЧЁТНЫЙ АНАЛИЗ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК ТОПЛИВНОГО ЦИКЛА РЕАКТОРА ТИПА БН-1200 С НАЧАЛЬНОЙ ЗАГРУЗКОЙ УРАНОВЫМ ТОПЛИВОМ И ПОСЛЕДУЮЩИМ ПЕРЕХОДОМ В БРИДЕРНЫЙ РЕЖИМ СИСТЕМА ГАЗОВОЙ КОМПЕНСАЦИИ ДАВЛЕНИЯ ПЕРВОГО КОНТУРА РЕАКТОРНОЙ УСТАНОВКИ БН-1200 Блок 3. Игра «Война и мир»

Создать проект проведения школьной конференции «Атомная энергетика: история, функционирования, наука, инновации». Подробно изучить работу и конструкцию реакторов на быстрых нейтронах и продемонстрировать результаты исследования учащимся. Ознакомить учащихся классов с протеканием основных процессов ядерной физики, связанных с функционированием атомной энергетики Привлечь внимание школьников к изучению истории развития, функционирования, научной основы атомной энергетики Связать познавательный процесс с демонстрацией применения тех знаний, которые школьники получают на уроках алгебры, физики, химии, в инновационной отрасли экономики. Повысить уровень эрудиции учащихся.

Учащиеся школ Родители Учителя Аудитория, желающая самостоятельно познакомиться с научным исследованием проекта.

ЭтапСрок реализацииПроведенная работа 1 этап – Анализ, изучение и сбор материала, связанного с общими понятиями ядерной физики 2 этап – Анализ, изучение и сбор материала, посвященного реактора на быстрых нейтронах. 3 этап – Создание единого научного проекта, основанного на собранном материале. 4 этап Проведение внутриклассых чтений, посвященных отдельным отраслям атомной науки. 5 этап Анализ и сбор информации, необходимой для создания игры «Война и мир». 6 этап Создание игры «Война и мир» 7 этап Проведение научной конференции «Атомная энергетика: история, функционирования, наука, инновации»

Учащиеся больше узнают об атомной энергетики и практическом применении научном знаний в ней. Многие заинтересуются самостоятельным изучением атомной физики и возможно захотят связать свою жизнь с работой на предприятии атомной энергетики. Повыситься уровень эрудиции учащихся.

Процесс деления может протекать только в том случае, когда потенциальная энергия начального состояния делящегося ядра превышает сумму масс осколков деления. Поскольку удельная энергии связи тяжёлых ядер уменьшается с увеличением их массы, это условие выполняется почти для всех ядер с массовым числом. Однако, как показывает опыт, даже самые тяжёлые ядра делятся самопроизвольно с очень малой вероятностью. Это означает, что существует энергетический барьер (барьер деления), препятствующий делению. Для описания процесса деления ядер, включая вычисление барьера деления, используется несколько моделей, но ни одна из них не позволяет объяснить процесс полностью. Описание на основе капельной модели. Стадии деления ядра-капли

Традиционно механизм деления рассматривается в рамках капельной модели ядра, этот подход восходит к работе Бора и Уилера 1939 года. Для деления с большой вероятностью тяжёлое ядро должно получить энергию извне, превышающую значение барьера деления. Так, после присоединения нейтрона ядро обладает энергией возбуждения, равной сумме энергии отделения (энергии связи) нейтрона и кинетической энергии захваченного нейтрона. Этой дополнительной энергии может быть достаточно, чтобы ядро перешло в возбуждённое состояние с интенсивными колебаниями. Физически аналогичную ситуацию можно получить, если поместить каплю воды на горячую горизонтальную поверхность. Если поверхность достаточно горячая, то капля будет плавать на изолирующем слое пара, поддерживающем её над поверхностью в свободном состоянии. При этом могут возникнуть колебания формы капли, при которых она примет последовательно шарообразную и эллипсоидальную форму. Такое колебательное движение представляет собой состояние динамического равновесия между инерционным движением вещества капли и поверхностным натяжением, которое стремится поддерживать сферически симметричную форму капли. Если силы поверхностного натяжения достаточно велики, то процесс вытягивания капли прекратится раньше, чем капля разделится. Если же кинетическая энергия инерционного движения Фотография делящейся капли воды Изменение потенциальной энергии и её составляющих в процессе деления ядра.

вещества капли окажется большой, то капля может принять гантелеобразную форму и при своём дальнейшем движении разделиться на две части. В случае ядра процесс происходит аналогично, только к нему добавляется электростатическое отталкивание протонов, действующее как дополнительный фактор против ядерных сил, удерживающих нуклоны в ядре. Если ядро находится в возбуждённом состоянии, то оно совершает колебательные движения, связанные с отклонениями его формы от сферической. Максимальная деформация увеличивается с ростом энергии возбуждения и при некотором её значении может превысить критическое значение, что приведёт к разрыву исходной капли и образованию двух новых. Колебательные движения возможны под действием сил поверхностного натяжения (аналог ядерных сил в капельной модели ядра) и кулоновских. На поясняющем рисунке показано изменение потенциальной энергии и отдельных её составляющих в процессе деления заряженной капли. Энергия поверхностного натяжения резко возрастает с ростом малых деформаций (состояния 1-3) и остаётся практически неизменной после того, как капля приобретает гантелевидную форму (3-4). Энергия кулоновского взаимодействия плавно уменьшается с ростом деформаций практически во всём диапазоне состояний. Ядра, образовавшиеся после деления исходного ядра, разлетаются в противоположные стороны под действием кулоновских сил и потенциальная энергия превращается в кинетическую (4-5). В итоге суммарная потенциальная энергия возрастает до момента деления капли, а затем уменьшается

Барьер деления равен разности между максимальным значением потенциальной энергии и её значением для исходного состояния, именно он препятствует самопроизвольному делению тяжёлых ядер. Разность между начальным значением потенциальной энергии и её минимальным конечным значением равна энергии реакции деления. Энергетически выгодно деление тяжёлых ядер ( больше нуля почти для всех ядер с ). Значения и зависят от массового числа ядра. Для ядер с барьер деления примерно равен 4060 МэВ, с ростом значение уменьшается и для самых тяжёлых ядер становится равным приблизительно 6 МэВ. Для ядер с барьер деления равен практически нулю, поэтому таких ядер в природе нет. Энергия реакции деления возрастает с ростом массового числа от отрицательных значений для ядер с до около 200 МэВ для ядер с. Оценочные значения и для некоторых ядер: A , МэВ14,51613, , МэВ18,

Таким образом, для реализации процесса деления с большой вероятностью ядро должно получить извне энергию, превышающую значение барьера деления. Такую энергию можно передать ядру различными способами (облучение гамма- квантами, бомбардировка частицами и др.). Из всех возможных способов практическое применение нашёл лишь один образование возбуждённого составного ядра путём присоединения к исходному ядру нейтрона, вклад других способов деления в ядерных реакторах (в том числе фотоделение гамма-квантами) составляет меньше 1 %. Деление нейтронами имеет огромное преимущество по сравнению с другими по двум причинам:гамма- квантами пороговое значение кинетической энергии для нейтрона меньше, чем для гамма-кванта, приблизительно на величину (энергия связи нейтрона в составном ядре), что следует из формулы для энергии возбуждения составного ядра; деление ядер нейтронами сопровождается испусканием нейтронов, что создаёт основу для протекания цепной реакции деления.

В ядерном реакторе мы имеем дело с управляемой ядерной реакцией. Как такая становится возможной – рассказано дальше. Устройство ядерного реактора. В настоящее время существует два типа ядерных реакторов ВВЭР (водо- водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер. Реактор ВВЭР привод СУЗ; 2 крышка реактора; 3 корпус реактора; 4 блок защитных труб (БЗТ); 5 шахта; 6 выгородка активной зоны; 7 топливные сборки (ТВС) и регулирующие стержни;

ТВЭЛ – (тепловыделяющий элемент). Это стержни в циркониевой оболочке с ниобийным легированием, внутри которых расположены таблетки из диоксида урана. Также ТВЭЛ включает в себя пружинную систему удержания топливных таблеток на одном уровне, что позволяет точнее регулировать глубину погружения/выведения топлива в активную зону. Они собраны в кассеты шестигранной формы, каждая из которых включает в себя несколько десятков ТВЭЛов. По каналам в каждой кассете протекает теплоноситель. Активная зона реактора состоит из сотен кассет, поставленных вертикально и объединенных вместе металлической оболочкой – корпусом, играющим также роль отражателем нейтронов. Среди кассет, с регулярной частотой вставлены управляющие стержни и стержни аварийной защиты реактора, которые в случае перегрева призваны заглушить реактор. ТВЭЛы в кассете выделены зеленым. Топливная кассета в сборе.

Сегодня ядерная энергетика и России, и мира базируется на технологиях теп­ловых водяных реакторов и открытого топливного цикла. Топливообеспечение АЭС с тепловыми реакторами осуществляется на основе технологий добычи при­родного урана и его обогащения для изготовления уранового топлива, в обращении с ОЯТ используется главным образом временное хранение. Современные АЭС безопасны, экологически привлекательны и, без учета т.н. «отложенных проблем», вырабатывают конкурентоспособную электроэнергию.

Для решения поставленных перед атомной энергетикой задач и учитывая сложность проблем и необходимость их комплексного и системного решения, обеспечивающего кардинальное технологическое перевооружение объектов атом­ной энергетики Российской Федерации была разработана федеральная целевая про­грамма «Ядерные энерготехнологии нового поколения на период годов и на перспективу до 2020 года» основной целью которой является разработка ядер­ных энерготехнологий нового поколения на базе реакторов на быстрых нейтронах с замкнутым ядерным топливным циклом для атомных электростанций, обеспечи­вающих потребности страны в энергоресурсах и повышение эффективности ис­пользования природного урана и отработавшего ядерного топлива. В рамках вы­полнения Программы предусмотрены также исследования новых способов исполь­зования энергии атомного ядра. Программой предусмотрено выполнение следующих проек­тов: Разработка перспективных технологий реакторов на быстрых нейтронах:

Создание новых экспериментальных стендов и специального оборудования, модернизация и развитие экспериментально-стендовой базы для обоснования фи­ зических принципов, проектно-конструкторских решений, анализа и обоснования безопасности реализации основных научно-технологических решений инноваци­ онной атомной энергетики: создание многоцелевого исследовательского реактора на быстрых нейтро­нах МБИР; техническое перевооружение опытного реактора на быстрых нейтронах те­пловой мощностью 60 МВт

БН-600 Корпус реактора представляет собой бак цилиндрической формы с эллиптическим днищем и конической верхней частью. Корпус через опорное кольцо установлен на катковые опоры фундамента. Внутри корпуса помещена металлоконструкция коробчатого типа опорный пояс, на котором укреплена напорная камера с активной зоной, зоной воспроизводства и хранилищем, а также внутрикорпусная биологическая защита.

Показатели 2010 год За период эксплуа­ тации Лучшее значение Установленная мощность, МВт ,4* Число часов работы, час Количество неплановых остановов (АЗ), шт Выработка электроэнергии, Млн. кВт.ч 3932, ,3 4401,96 КИУМ, %74,82 73,95 83,52 Годовая коллективная доза облучения, чел*3в 0,4420,440,08 Выход ИРГ, Ки/год147,840369,860 КПД, %43,4 40,8 (по проекту)

ОСНОВНЫЕ ПАРАМЕТРЫ ЭНЕРГОБЛОКА БН-800 Тепловая мощность, МВт 2100 Электрическая мощность, МВт 800 Температура натрия, °С: первого контура второго контура 547/ /310 Расход теплоносителя по первому и второму контурам, т/ч 3000

РАЗРЕЗ РЕАКТОРА БН–800 1 – ГЛАВНЫЙ ЦИРКУЛЯЦИОННЫЙ НАСОС; 2 – БОЛЬШАЯ ПОВОРОТНАЯ ПРОБКА; 3 – МЕХАНИЗМ ПЕРЕГРУЗКИ; 4 – МАЛАЯ ПОВОРОТНАЯ ПРОБКА; 5 – ЦЕНТРАЛЬНАЯ ПОВОРОТНАЯ КОЛОННА С МЕХАНИЗМАМИ СУЗ; 6 – ВЕРХНЯЯ НЕПОДВИЖНАЯ ЗАЩИТА; 7 – КОРПУС РЕАКТОРА; 8 – СТРАХОВОЧНЫЙ КОРПУС; 9 – ТЕПЛООБМЕННИК; 10 – АКТИВНАЯ ЗОНА; 11 – НАПОРНАЯ КАМЕРА

Для удовлетворения всех требований в проекте БН-1200 впервые для отечест­венных энергоблоков с натриевым теплоносителем была предложена «комбиниро­ванная» СГКД, принципиальная схема СГКД БН-1200 представлена на рис. 1.- реактор 2.- бак компенсатор (БК) 3.–ресивер раздачи выдержанного аргона 4.- компрессор 5.- ресиверы выдержки аргона 6.- гидрозатвор

Атомная энергетика - один из наиболее перспективных путей утоления энергетического голода человечества в условиях энергетических проблем, связанных с использованием ископаемого горючего топлива. Термоядерные электростанции в будущем навсегда избавят человечество от заботы об источниках энергии. Тепловые электростанции оказывают неустранимое опасное воздействие на окружающую среду, выбрасывая углекислый газ. В то же время атомные электростанции при должном уровне контроля полностью безопасны. За новыми разработками в сфере атомной энергетики такими, как, например, реакторы на быстрых нейтронах, будущее мировой системы энергоснабжения.