Electricity. References: 1.Jones, D.A., "Electrical engineering: the backbone of society", Proceedings of the IEE: Science, Measurement and Technology.

Презентация:



Advertisements
Похожие презентации
Capacitance. Capacitance is the ability of a body to store an electrical charge. Any body or structure that is capable of being charged, either with static.
Advertisements

RLC circuit. An RLC circuit (or LCR circuit) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in.
Electromagnetism. Electromagnetism is the branch of science concerned with the forces that occur between electrically charged particles. In electromagnetic.
Electricity Electric circuits
Producing Electricity Мозговенко Ольга Петровна Учитель английского языка ЦО 1828 «Сабурово» Москва.
Science Science (from Latin scientia, meaning "knowledge") is a systematic enterprise that builds and organizes knowledge in the form of testable explanations.
Correlation. In statistics, dependence refers to any statistical relationship between two random variables or two sets of data. Correlation refers to.
Maxwell's equations. Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of.
Albina Manapova ED There is great variety in the types of speakers that are available in the market today. However, the basic principles of sound.
Special relativity. Special relativity (SR, also known as the special theory of relativity or STR) is the physical theory of measurement in an inertial.
Lecture Outline : Production of Induced Force on a Current carrying wire Induced Voltage On A Conductor moving in a Magnetic Field A Linear DC Machine.
WE MUST PROTECT OUR PLANET Зайцев Владимир Ученик 10 «В» класса.
In America Unemployment Why does the government collect statistics on the unemployed? Why do we care?
Taxes in the USA. To tax is to impose a financial charge upon a taxpayer by state. Failure to pay is punishable by law. Taxes consist of direct tax (income.
Albert Einstein. 0A0A ny list of the greatest thinkers in history will contain the name of the brilliant physicist Albert Einstein.
Science and Technology The first computer. When you ask the question who invented the first computer, you definitely need to be prepared to hear many.
Environmental Protection. Our planet the Earth Our planet the Earth is only a tiny part of the universe, but nowadays it's the only place where we can.
Benford Benford's law, also called the first-digit law, states that in lists of numbers from many (but not all) real-life sources of data, the leading.
Coriolis effect. In physics, the Coriolis effect is a deflection of moving objects when they are viewed in a rotating reference frame. In a reference.
When coal and petroleum are burned, they release certain harmful gases into the air. These gases combine with the oxygen and water in the air. When the.
Транксрипт:

Electricity

References: 1.Jones, D.A., "Electrical engineering: the backbone of society", Proceedings of the IEE: Science, Measurement and Technology 138 (1): 1–10 2. Moller, Peter (December 1991), "Review: Electric Fish", BioScience 41 (11): 794–6 [794] 3.Bullock, Theodore H. (2005), Electroreception, Springer, pp. 5–7, ISBN ISBN Morris, Simon C. (2003), Life's Solution: Inevitable Humans in a Lonely Universe, Cambridge University Press, pp. 182–185, ISBN ISBN The Encyclopedia Americana; a library of universal knowledge (1918), New York: Encyclopedia Americana CorpEncyclopedia AmericanaNew York 6.Stewart, Joseph (2001), Intermediate Electromagnetic Theory, World Scientific, p. 50, ISBN ISBN Simpson, Brian (2003), Electrical Stimulation and the Relief of Pain, Elsevier Health Sciences, pp. 6–7, ISBN ISBN Frood, Arran (27 February 2003), Riddle of 'Baghdad's batteries', BBC, retrieved on February2003Riddle of 'Baghdad's batteries' 9.Baigrie, Brian (2006), Electricity and Magnetism: A Historical Perspective, Greenwood Press, pp. 7–8, ISBN ISBN Chalmers, Gordon (1937), "The Lodestone and the Understanding of Matter in Seventeenth Century England", Philosophy of Science 4 (1): 75–95 11.Srodes, James (2002), Franklin: The Essential Founding Father, Regnery Publishing, pp. 92–94, ISBN It is uncertain if Franklin personally carried out this experiment, but it is popularly attributed to him.ISBN

12.Uman, Martin (1987) (PDF). All About Lightning. Dover Publications. ISBN X. MartinAll About LightningISBN X Kirby, Richard S. (1990), Engineering in History, Courier Dover Publications, pp. 331–333, ISBN ISBN Marković, Dragana, The Second Industrial Revolution, retrieved on The Second Industrial Revolution Trefil, James (2003), The Nature of Science: An A-Z Guide to the Laws and Principles Governing Our Universe, Houghton Mifflin Books, p. 74, ISBN ISBN Duffin, W.J. (1980), Electricity and Magnetism, 3rd edition, McGraw-Hill, pp. 2–5, ISBN XISBN X 17. Sears, et al., Francis (1982), University Physics, Sixth Edition, Addison Wesley, p. 457, ISBN ISBN "The repulsive force between two small spheres charged with the same type of electricity is inversely proportional to the square of the distance between the centres of the two spheres." Charles-Augustin de Coulomb, Histoire de l'Academie Royal des Sciences, Paris Duffin, W.J. (1980), Electricity and Magnetism, 3rd edition, McGraw-Hill, p. 35, ISBN XISBN X 20.National Research Council (1998), Physics Through the 1990s, National Academies Press, pp. 215–216, ISBN ISBN Umashankar, Korada (1989), Introduction to Engineering Electromagnetic Fields, World Scientific, pp. 77–79, ISBN ISBN Hawking, Stephen (1988), A Brief History of Time, Bantam Press, p. 77, ISBN ISBN

23. Shectman, Jonathan (2003), Groundbreaking Scientific Experiments, Inventions, and Discoveries of the 18th Century, Greenwood Press, pp. 87–91, ISBN ISBN Sewell, Tyson (1902), The Elements of Electrical Engineering, Lockwood, p. 18. The Q originally stood for 'quantity of electricity', the term 'electricity' now more commonly expressed as 'charge'. 25.Close, Frank (2007), The New Cosmic Onion: Quarks and the Nature of the Universe, CRC Press, p. 51, ISBN ISBN Ward, Robert (1960), Introduction to Electrical Engineering, Prentice-Hall, p Solymar, L. (1984), Lectures on electromagnetic theory, Oxford University Press, p. 140, ISBN ISBN Duffin, W.J. (1980), Electricity and Magnetism, 3rd edition, McGraw-Hill, pp. 23–24, ISBN XISBN X 29.Berkson, William (1974), Fields of Force: The Development of a World View from Faraday to Einstein, Routledge, p. 370, ISBN Accounts differ as to whether this was before, during, or after a lecture.ISBN Bird, John (2007), Electrical and Electronic Principles and Technology, 3rd edition, Newnes, p. 11, ISBN Bird, John (2007), Electrical and Electronic Principles and Technology, 3rd edition, Newnes, pp. 206–207, ISBN Bird, John (2007), Electrical and Electronic Principles and Technology, 3rd edition, Newnes, pp. 223–225, ISBN Sears, et al., Francis (1982), University Physics, Sixth Edition, Addison Wesley, pp. 469–470, ISBN ISBN Sears, et al., Francis (1982), University Physics, Sixth Edition, Addison Wesley, p. 479, ISBN ISBN

Electricity

Electricity (from New Latin ēlectricus, "amber-like") is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such as lightning and static electricity, but in addition, less familiar concepts such as the electromagnetic field and electromagnetic induction. encompassesincluderecognizablein additionfamiliar concepts

In general usage, the word 'electricity' is adequate to refer to a number of physical effects. However, in scientific usage, the term is vague, and these related, but distinct, concepts are better identified by more precise terms:Howevervaguedistinctprecise

Electric charge – a property of some subatomic particles, which determines their electromagnetic interactions. Electrically charged matter is influenced by, and produces, electromagnetic fieldspropertysubatomicinteractions Electric current – a movement or flow of electrically charged particles, typically measured in amperes. Electric field – an influence produced by an electric charge on other charges in its vicinity. influencevicinity Electric potential – the capacity of an electric field to do work, typically measured in volts.capacity Electromagnetism – a fundamental interaction between the electric field and motion of electric charge.

Electricity has been studied since antiquity, though scientific advances were not forthcoming until the seventeenth and eighteenth centuries. It would remain however until the late nineteenth century that engineers were able to put electricity to industrial and residential use, a time which witnessed a rapid expansion in the development of electrical technology.advances residential witnessedexpansion development Electricity's extraordinary versatility as a source of energy means it can be put to an almost limitless set of applications which include transport, heating, lighting, communications. The backbone of modern industrial society is, and for the foreseeable future can be expected to remain, the use of electrical power. extraordinary backboneto remain

Benjamin Franklin conducted extensive research on electricity in the 18th century research

Electric circuits

An electric circuit is an interconnection of electric components, usually to perform some useful task, with a return path to enable the charge to return to its source.interconnectionuseful enable The components in an electric circuit can take many forms, which can include elements such as resistors, capacitors, switches, transformers and electronics. Electronic circuits contain active components, usually semiconductors, and typically exhibit non-linear behaviour, requiring complex analysis. The simplest electric components are those that are termed passive and linear: while they may temporarily store energy, they contain no sources of it, and exhibit linear responses to stimuli.componentscapacitorssemiconductors A basic electric circuit. The voltage source V on the left drives a current I around the circuit, delivering electrical energy into the resistance R. From the resistor, the current returns to the source, completing the circuit.delivering completing

The capacitor is a device capable of storing charge, and thereby storing electrical energy in the resulting field. It consists of two conducting plates separated by a thin insulating layer; in practice, thin metal foils are coiled together, increasing the surface area per unit volume and therefore the capacitance.capableplatesseparated foils When the current changes, the magnetic field does too, inducing a voltage between the ends of the conductor. The induced voltage is proportional to the time rate of change of the current. The constant of proportionality is termed the inductance. The unit of inductance is the henry, named after Joseph Henry, a contemporary of Faraday. One henry is the inductance that will induce a potential difference of one volt if the current through it changes at a rate of one ampere per secondendsinducedcontemporary will induce rate The inductor is a conductor, usually a coil of wire, that stores energy in a magnetic field in response to the current flowing through it.inductorstoresresponse The unit of capacitance is the farad, named after Michael Faraday, and given the symbol F: one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. develops coulomb

Electrical energy is usually generated by electro-mechanical generators driven by steam produced from fossil fuel combustion, or the heat released from nuclear reactions; or from other sources such as kinetic energy extracted from wind or flowing water. Such generators bear no resemblance to Faraday's homopolar disc generator of 1831, but they still rely on his electromagnetic principle that a conductor linking a changing magnetic field induces a potential difference across its ends. The invention in the late nineteenth century of the transformer meant that electricity could be generated at centralized power stations, benefiting from economies of scale, and be transmitted across countries with increasing efficiency. Since electrical energy cannot easily be stored in quantities large enough to meet demands on a national scale, at all times exactly as much must be produced as is required. This requires electricity utilities to make careful predictions of their electrical loads, and maintain constant coordination with their power stations. fossilcombustionreactionsresemblancelinking acrossinventioncentralized benefitingscale efficiencycannotdemandsrequiresutilitiescarefulmaintain Production and uses Generation

Demand for electricity grows with great rapidity as a nation modernizes and its economy develops. The United States showed a 12% increase in demand during each year of the first three decades of the twentieth century, a rate of growth that is now being experienced by emerging emerging economies such as those of India or China. Historically, the growth rate for electricity demand has outstripped that for other forms of energy, such as coal.

Uses

Electricity is an extremely flexible form of energy, and it may be adapted to a huge, and growing, number of uses. The invention of a practical incandescent light bulb in the 1870s led to lighting becoming one of the first publicly available applications of electrical power. Although electrification brought with it its own dangers, replacing the naked flames of gas lighting greatly reduced fire hazards within homes and factories. Public utilities were set up in many cities targeting the burgeoning market for electrical lighting.flexiblegrowing incandescentavailableapplications broughtreplacingPublic utilities

Electricity is used within telecommunications, and indeed the electrical telegraph, demonstrated commercially in 1837 by Cooke and Wheatstone, was one of its earliest applications. With the construction of first intercontinental, and then transatlantic, telegraph systems in the 1860s, electricity had enabled communications in minutes across the globe.

Optical fibre and satellite communication technology have taken a share of the market for communications systems, but electricity can be expected to remain an essential part of the process.satellitehave taken essential

Electricity and the natural world Physiological effects

A voltage applied to a human body causes an electric current to flow through the tissues, and although the relationship is non-linear, the greater the voltage, the greater the current. The threshold for perception varies with the supply frequency and with the path of the current, but is about 1 mA for mains-frequency electricity. tissues relationshipthreshold If the current is sufficiently high, it will cause muscles contraction, fibrillation of the heart, and tissue burns. The lack of any visible sign that a conductor is electrified makes electricity a particular hazard.sufficientlycontractiontissue burnsparticularhazard

The pain caused by an electric shock can be intense, leading electricity at times to be employed as a method of torture. Death caused by an electric shock is referred to as electrocution. pain shockis referred Electrocution is still the means of judicial execution in some jurisdictions, though its use has become in recent times.still execution jurisdictions

END