История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х 2 +Х=3/4 Х 2 -Х=14,5.

Презентация:



Advertisements
Похожие презентации
A x 2 + b x + c = 0 x 2 + px + q = 0.
Advertisements

10 способов решения квадратных уравнений Работу выполнила учитель математики МБОУ « СОШ 31» г. Энгельса Волосожар М. И.
Открыть Способы решений полных квадратных уравнений. Разложение Выделение Теорема Виета «Переброска» Свойство коэффициентов Графическое решение Выйти С.
«СПОСОБЫ РЕШЕНИЯ КВАДРАТНЫХ УРАВНЕНИЙ» Элективный курс по алгебре по теме:
Решение квадратных уравнений различными способами Ученик 8 б класса Шаяхметов Руслан Учитель: Матвеева С.Н.
МБОУ «СОШ 2» г.Саянска Автор: обучающийся 8 В класса МБОУ «СОШ 2» г. Саянска Павельев Иван Научный руководитель: учитель математики МБОУ «СОШ 2» г. Саянска.
Автор: Павельев Иван 1. Способ 1. Решение уравнения по формуле Способ 2. Решение уравнения с чётным коэффициентом Способ 3. Решение уравнения по теореме.
Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решать три-четыре задачи. Решая одну задачу различными.
Х²+2х-7=0 х²+2х=0 (х-5)(2х+4)=0 4х²+х-5=0 3х²-4х+7=0 Выполнил: Сизиков Станислав Учитель: Курилова М.Д.
Способ 1. Разложение левой части уравнения на множители. Ответ: 5; х - 8 х.
Классная работа Урок 2. Определение Квадратным уравнением называется уравнение вида:
Квадратные уравнения Квадратные уравнения- это фундамент, на котором покоиться величественное здание алгебры.
10 способов решения квадратного уравнения Математика 9 класс ах 2 + bх + с = 0.
Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при.
1.1 Древний Вавилон Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные.
Решение квадратных уравнений по формуле Презентацию подготовил Ученик 8 класса МОУ «СОШ 1 г.Ртищево» Клён Александр Николаевич Руководитель: учитель алгебры.
1 Исследовательская работа по математике «Решение квадратных уравнений различными способами» Ученица 10 класса Усманова Лиана Руководитель: Матвеева С.Н.
Бронфина О. А., учитель математики МБОУ « СОШ 22» г. Миасс. Бронфина О. А., учитель математики МБОУ « СОШ 22» г. Миасс.
Муниципальное образовательное учреждение «Храбровская средняя общеобразовательная школа» Десять способов решения квадратного уравнения (пособие для учащихся.
Десять способов Решения квадратных уравнений.. Когда уравнение решаешь, дружок, Ты должен найти у него корешок. Значение буквы проверить не сложно, Поставь.
Транксрипт:

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х 2 +Х=3/4 Х 2 -Х=14,5

Как составлял и решал Диофант квадратные уравнения. Отсюда уравнение: (10+х)(10-х) =96 или же: х2 =96 х2 - 4=0 (1) Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Квадратные уравнения в Индии. ах2 + bх = с, а>0. (1)

Квадратные уравнения у ал – Хорезми. 1) «Квадраты равны корнями», т.е. ах2 + с = bх. 2) «Квадраты равны числу», т.е. ах2 = с. 3) «Корни равны числу», т.е. ах = с. 4) «Квадраты и числа равны корням», т.е. ах2 + с = bх. 5) «Квадраты и корни равны числу», т.е. ах2 + bx = с. 6) «Корни и числа равны квадратам», т.е. bx + с = ах2.

Квадратные уравнения в Европе ХIII - ХVII вв. х2 +bх = с, при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

О теореме Виета. «Если В + D, умноженное на А - А2, равно ВD, то А равно В и равно D». На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b)х - х2 = ab, т.е. х2 - (а + b)х + аb = 0, то х1 = а, х2 = b.

Способы решения квадратных уравнений. 1. СПОСОБ: Разложение левой части уравнения на множители. Решим уравнение х2 + 10х - 24 = 0. Разложим левую часть на множители: х х - 24 = х х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2). Следовательно, уравнение можно переписать так: Следовательно, уравнение можно переписать так: (х + 12)(х - 2) = 0 Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = Это означает, что число 2 и - 12 являются корнями уравнения х х - 24 = 0. Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = Это означает, что число 2 и - 12 являются корнями уравнения х х - 24 = 0.

2. СПОСОБ: Метод выделения полного квадрата. Решим уравнение х2 + 6х - 7 = 0. Выделим в левой части полный квадрат. Для этого запишем выражение х2 + 6х в следующем виде: х2 + 6х = х2 + 2 х 3. полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х2 + 2 х = (х + 3)2. Преобразуем теперь левую часть уравнения х2 + 6х - 7 = 0, прибавляя к ней и вычитая 32. Имеем: х2 + 6х - 7 = х2 + 2 х = (х + 3) = (х + 3) Таким образом, данное уравнение можно записать так: (х + 3) =0, (х + 3)2 = 16. Следовательно, х = 0, х1 = 1, или х + 3 = -4, х2 = -7.

3. СПОСОБ: Решение квадратных уравнений по формуле. Умножим обе части уравнения ах2 + bх + с = 0, а 0 на 4а и последовательно имеем: 4а2х2 + 4аbх + 4ас = 0, ((2ах)2 + 2ах b + b2) - b2 + 4ac = 0, (2ax + b)2 = b2 - 4ac, 2ax + b = ± b2 - 4ac, 2ax = - b ± b2 - 4ac,

4. СПОСОБ: Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х2 + px + c = 0. ( (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x1 x2 = q, x1 + x2 = - p а) x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0; x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0. б) x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0; x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.

5. СПОСОБ: Решение уравнений способом «переброски». Рассмотрим квадратное уравнение ах2 + bх + с = 0, где а 0. Умножая обе его части на а, получаем уравнение а2х2 + аbх + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у2 + by + ас = 0, равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1 = у1/а и х1 = у2/а.

Пример. Пример. Решим уравнение 2х 2 – 11х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у 2 – 11у + 30 = 0. Согласно теореме Виета у 1 = 5 х 1 = 5/2 x 1 = 2,5 у 2 = 6 x 2 = 6/2 x 2 = 3. Ответ: 2,5; 3.

6. СПОСОБ: Свойства коэффициентов квадратного уравнения. А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а 0. 1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а. Доказательство. Разделим обе части уравнения на а 0, получим приведенное квадратное уравнение x2 + b/a x + c/a = 0. Согласно теореме Виета x1 + x2 = - b/a, x1x2 = 1 c/a. По условию а – b + с = 0, откуда b = а + с. Таким образом, x1 + x2 = - а + b/a= -1 – c/a, x1x2 = = = = - 1 ( - c/a), т.е. х1 = -1 и х2 = c/a, что и требовалось доказать.

Б. Если второй коэффициент b = 2k – четное число, то формулу корней В. Приведенное уравнение х 2 + рх + q= 0 совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней

7. СПОСОБ: Графическое решение квадратного уравнения. Если в уравнении х2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х2 = - px - q. Построим графики зависимости у = х2 и у = - px - q.

Пример 1)Р ешим графически уравнение х2 - 3х - 4 = 0 (рис. 2). Решение. Запишем уравнение в виде х2 = 3х + 4. Построим параболу у = х2 и прямую у = 3х + 4. Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13). Ответ: х1 = - 1; х х х х2 = 4

8. СПОСОБ: Решение квадратных уравнений с помощью циркуля и линейки. нахождения корней квадратного уравнения ах2 + bх + с = 0 с помощью циркуля и линейки (рис. 5). Тогда по теореме о секущих имеем OB OD = OA OC, откуда OC = OB OD/ OA= х1х2/ 1 = c/a.

1) Радиус окружности больше ординаты центра (AS > SK, или R > a + c/2a), окружность пересекает ось Ох в двух точках (6,а рис. ) В(х1; 0) и D(х2; 0), где х1 и х2 - корни квадратного уравнения ах2 + bх + с = 0. 2) Радиус окружности равен ординате центра (AS = SB, или R = a + c/2a), окружность касается оси Ох (рис. 6,б) в точке В(х1; 0), где х1 - корень квадратного уравнения. 3) Радиус окружности меньше ординаты центра окружность не имеет общих точек с осью абсцисс (рис.6,в), в этом случае уравнение не имеет решения.

9. СПОСОБ: Решение квадратных уравнений с помощью номограммы. z2 + pz + q = 0. Криволинейная шкала номограммы построена по формулам (рис.11): Полагая ОС = р, ED = q, ОЕ = а (все в см.), Из подобия треугольников САН и CDF получим пропорцию

Примеры. Примеры. 1) Для уравнения z 2 - 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0 (рис.12). 2) Решим с помощью номограммы уравнение 2z 2 - 9z + 2 = 0. Разделим коэффициенты этого уравнения на 2, получим уравнение z 2 - 4,5z + 1 = 0. Номограмма дает корни z 1 = 4 и z 2 = 0,5. Номограмма дает корни z 1 = 4 и z 2 = 0,5. 3) Для уравнения z z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t, получим уравнение получим уравнение t 2 - 5t + 2,64 = 0, которое решаем посредством номограммы и получим t 1 = 0,6 и которое решаем посредством номограммы и получим t 1 = 0,6 и t 2 = 4,4, откуда z 1 = 5t 1 = 3,0 и z 2 = 5t 2 = 22,0.

10. СПОСОБ: Геометрический способ решения квадратных уравнений. Примеры. 1) Решим уравнение х2 + 10х = 39. В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.15). Для искомой стороны х первоначального квадрата получим

у2 + 6у - 16 = 0. Решение представлено на рис. 16, где у2 + 6у = 16, или у2 + 6у + 9 = Решение. Выражения у2 + 6у + 9 и геометрически представляют собой один и тот же квадрат, а исходное уравнение у2 + 6у = 0 - одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у1 = 2, у2 = - 8 (рис.16).