Гидробиологические факторы Студентка 1 курса Ибрагимова К. А.

Презентация:



Advertisements
Похожие презентации
Плазма Что такое плазма Пла́зма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных атомов.
Advertisements

ВОДНАЯ СРЕДА ОБИТАНИЯ. ВОДНАЯ СРЕДА ХАРАКТЕРИЗУЕТСЯ ВЫСОКОЙ ПЛОТНОСТЬЮ, МЕНЬШИМ СОДЕРЖАНИЕМ КИСЛОРОДА, ЗНАЧИТЕЛЬНЫМИ ПЕРЕПАДАМИ ДАВЛЕНИЯ. ГИБРИБИОНТЫОБИТАТЕЛИ.
© Кукса Максим, ученик 11 класса, 464 школы. Биоценоз пресного водоема Любой природный водоем, например пруд, с его растительным и животным населением.
Тема: Экология. Экологические факторы Задачи: Дать определение и сформировать знания об основных задачах, стоящих перед экологией. Сформировать понятие.
Экологические факторы Абиотические Биотические Антропогенные.
Основы теории электролитической диссоциации Аррениуса Предпосылки создания теории Для электролитов повышение температуры кипения, понижение температуры.
Презентация на тему: « Запасы Воды» Запасы Воды Моря, О кеаны Пресная в ода Ледники Реки, о зёраАтмосфера Живые организмы Человек Медуза Кровь Клетки.
Биологическое действие ионизирующего излучения В процессах взаимодействия ио­ низирующих излучений с веществом энергия излучений передается атомам и молекулам.
Электромагнитные излучения небесных тел. Электромагнитное излучение небесных тел основной источник информации о космических объектах. Исследуя электромагнитное.
Царство животных.
Водная среда. Водная среда. автор: Киселева О.Н. Киселева О.Н. учитель экологии МАОУ «Лицей 37» г.Саратова.
ТЕМА: «Газообразные, жидкие и твердые вещества» Работу по химии выполнила ученица 10 «Б» класса Салахян Нора.
Вода - самое удивительное вещество Земле Интеллектуальная игра.
Биосфераживая оболочка планеты.. Понятие «биосфера»: Ж.Б.Ламаркв книге «Гидрология» в 1802году. Зюссв книге «Лик Земли» в 1875году Вернадскийучение о.
Государственное общеобразовательное учреждение вечерняя (сменная) школа 153 Фрунзенского района Открытый урок по биологии «Среда обитания организмов и.
Подготовил Бобров Сергей. Агрегатное состояние Это состояние одного и того же вещества в определённом интервале температур и давлений, характеризующееся.
Температура Учитель Кононов Геннадий Григорьевич СОШ 29 Славянский район Краснодарского края.
РАСТВОРЫ ОСНОВЫ ХИМИИ. ЛЕКЦИЯ 5.. ОСНОВНЫЕ ПОНЯТИЯ Раствор – однофазная ( гомогенная ) многокомпонентная система, состав которой в определенных пределах.
рассмотреть структуру биосферы, выделить границы биосферы познакомиться с различными формами воздействия живых организмов на среду обитания.
Организм и окружающая средa А.С. Соколов. I. Понятие среды обитания Аутэкология – это раздел экологии, рассматривающий взаимоотношения отдельного организма.
Транксрипт:

Гидробиологические факторы Студентка 1 курса Ибрагимова К. А.

ВВЕДЕНИЕ Население Земли, образующее вместе с субстратом, в котором оно обитает, биосферу нашей планеты, сконцентрировано в газообразной оболочке атмосфере, твердой литосфере и жидкой гидросфере, причем последняя представляет собой наиболее широкую арену жизни. Из общей площади поверхности нашей планеты, равной приблизительно 510 млн. /еж2, около 362 млн. км2, т. е. более 70,5%, приходится на долю водного зеркала, а если принять во внимание и подземные воды, распространенные почти повсеместно, то окажется, что водная оболочка практически покрывает всю Землю. Кроме того, в отличие от атмосферы и литосферы гидросфера заселена во всей своей толще, часто измеряемой сотнями и тысячами метров. Население гидросферы, или гидробиос, представленное водными организмами, или гидробионтами, их популяциями и сообществами, играет в жизни человека чрезвычайно важную роль, непрерывно возрастающую по мере освоения водоемов. Одни из гидробионтов широко используются промыслом или полезны в иных отношениях, другие приносят вред, будучи патогенными для человека и домашних животных или создавая помехи народному хозяйству, в частности водоснабжению, судоходству и эксплуатации гидротехнических сооружений. Поэтому по мере освоения пресных и морских водоемов все более необходимым становилось изучение их населения с целью повышения его положительной и снижения отрицательной роли в жизни человека. Задачу такого изучения населения водоемов взяла на себя возникшая в конце прошлого века наука гидробиология

Особи каждого вида характеризуются определенным типом обмена веществ и энергии, без сохранения которого не могут успешно расти и развиваться. Если состояние среды таково, что организму грозит нарушение баланса обмена веществ и энергии, то он либо находит другое, более благоприятное положение в пространстве, либо изменяет режим обмена веществ и энергии в пределах своих адаптационных возможностей. Оптимальными называются условия, в которых организм с наименьшими энергетическими затратами сохраняет характерный для него тип обмена веществ. Оптимальные значения какого-либо фактора 'применительно к отдельным функциям неодинаковы,.поэтому оптимум в отношении организма в целом понятие интегральное. Оптимальные условия это не те, которые обеспечивают наилучшие условия для осуществления отдельных функций, а те, при которых суммарный эффект проявления всех функций позволяет организму в максимальной степени реализовать потенциальные возможности роста и развития. Оптимальная величина фактора для каждого организма не постоянна, а зависит от состояния организма и от суммы всех условий, 1в которых он обитает. Не стабильна для особей вида и величина их экологической валентности, изменяющаяся по мере роста организмов, различная для разных состояний последних и зависящая от сочетания всех других взаимодействующих факторов. Например, рачки Роп{о§аттагиз погибают при увеличении концентрации иона К свыше 120 мг/л, но если в воде имеется достаточное количество кальция, гибели животных не происходит (Чекуно-ва, 1960).

Экологическая валентность организмов в отношении различных факторов сильно варьирует. В качестве наглядной характеристики экологического облика гидробионтов В. И. Жадин предложил вычерчивать их экологические спектры (характеристики отношения организмов к различным факторам). Для построения экологического спектра гидробионтов шкала каждого абиотического фактора разделяется В. И. Жадиным (1956) на три отрезка, обозначаемых как олиго-, мезо- и политшг данного фактора. В отношении пресноводных животных мезотип важнейших абиотических факторов характеризуется следующими величинами: скорость течения 0,1 1 м/сек, прозрачность см, рЫ 79, насыщенность воды кислородом 1015%, содержание хлора мг/л, концентрация СаО ме/л, содержание органического вещества в воде (выражаемое в количестве кислорода, требующегося на окисление органического вещества) 1020 мг/л. Олиготи-пы перечисленных факторов имеют значения ниже приведенных величин, политипы выше. Мезотипом температуры принимается вегетационный период средней продолжительности с довольно значительным числом дней, когда температура воды превышает 20° С (для политипадо 30°С). В отношении заиления грунта принимается: олиготип отсутствие заметного на глаз ила (чистое песчаное или каменистое дно), мезотип наличие небольшого слоя окисленного ила, поли-тип слой черного (восстановленного) ила. Для большей выразительности графического изображения экологических спектров олиго-, мезо- и политип каждого фактора подразделяется в идиограммах на 3 отрезка, обозначаемых буквами а, (3 и у в порядке нарастания величины фактора. Пример графического изображения экологического спектра показан на рис. 2. Не все факторы абиотической среды играют равную роль в жизни водного населения, в связи с чем они часто делятся на главные и второстепенные. К главным факторам относятся физико-химические свойства воды и грунта, растворенные и взвешенные в воде вещества, температура, свет, ионизирующая радиация и некоторые другие. По тому, как проявляется действие факторов на организмы, находящиеся в густых или разреженных популяциях, их принято делить на зависимые и независимые от плотности населения. В первом случае действие факторов в популяциях разной плотности проявляется неодинаково, во втором независимо от нее. Абиотические факторы 1в основном действуют на организмы независимо от плотности популяции.

Отдельные факторы среды в природных условиях действуют не изолированно, а совокупно. В рамках этого совокупного действия роль отдельных факторов может сильно трансформироваться и зависеть от других условий. Например, оптимум освещенности для организмов сильно меняется в разных температурных условиях в зависимости от концентрации кислорода, активной реакции среды и ее окислительно-восстановительного потенциала. Достаточно высокая концентрация кальция в ряде случаев снимает летальное действие высоких концентраций иона калия. Азовская Вге1$$епа ро1утогрНа в лабораторных условиях хорошо переносит колебания солености от 0 до 0,5%, а в море встречается в воде с концентрацией соли не более 0,2%; моллюск РогИапсИа агсИса почти не встречается в водах с температурой выше 2° С, хотя без всякого ущерба переносит в лаборатории 78° С (Милославская, 1964).

Температурные колебания плотности воды в пределах третьего и четвертого знака означают очень многое в жизни пелагических организмов в смысле изменения условий плавания (различная спорность среды). Другое значение плотности воды как экологического фактора связано с ее давлением на организм, которое на глубинах, измеряемых километрами, выражается сотнями атмосфер. С углублением на 10,3 м в пресную и на 9,986 м в морскую воду (при 4° С) давление возрастает на 1 атм и в океанических глубинах может достигать свыше 1000 атм. Организмы, способные существовать в широком диапазоне давлений воды, называются эврибатнылш (ЬаШиз глубина), а не выдерживающие больших колебаний этого фактора стенобитными. Например, голотурии Е1рШа и МугШгосНиз встречаются на глубинах от 100 до 9000 м, червь РггариЫз саийаЫз в литорали и на глубине до 7 тыс. м. По-видимОхму, недостаточная толерантность (терпимость) к повышенному давлению мешает пузырным сифоно-форам заселять большие глубины, в то время как беспузырные могут проникать в абиссаль и ультраабиссаль (М. Е. Виноградов, 1968). Распределение гидробионтов по разным глубинам связано не только с давлением воды, но и с многими другими факторами. В условиях опыта гидробионты проявляют высокую устойчивость к повышению давления. Крабы РасНу§гарзиз сгаззьрез без вреда для себя выносили погружение на 900 м, моллюски МуШиз ейиИз на 2227 м. Бактерии ЕзсНепсЫа соИ выдерживают гидростатическое давление до 1000 атм, коловратки РНИосИпа гозео1а до 1600 атм (Ьттег2ауа е! а1., 1969). Рачки циклопы начинают проявлять беспокойство только после повышения давления до 100 атм; при 400 атм они теряют активность и падают на дно. У различных инфузорий и жгутиковых снижение двигательной активности наблюдается с повышением давления до атм (КНсЫгщ, 1969). Через 56 ч после снятия давления в 1000 атм возвращались к нормальной жизни актинии, через 1012 ч морские звезды. Обычно, как это установил еще М. Фонтен в 1930 г., с повышением давления сначала наблюдается стимуляция двигательной активности, сопровождающаяся увеличением газообмена (Тил, 1966), затем ее подавление и, наконец, смерть, которая, по-видимому, связана с необратимыми изменениями структуры протоплазмы вследствие сдвига равновесия в системе золь^гель в сторону повышения вязкости.

С увеличением вязкости протоплазмы замедляется темп клеточного деления и другие проявления ее движения, ©следствие чего, как и под влиянием низких температур, (происходит сдвиг в соотношении процессов роста и развития, сопровождающийся увеличением размера организмов. Справедливость этого соображения подтверждается цитологическими наблюдениями над равноногими раками: увеличение их размеров с глубиной сопровождается укрупнением клеток их тела (Жаркова, 1966). Другое доказательство дают опыты с простейшими: с повышением температуры на 5° С «критические давления, выдерживаемые животными, увеличивались на 4070 атм. Эти данные можно объяснить антагонистическим действием высоких температуры и давления на протоплазму: в первом случае ее вязкость понижается, во втором повышается. У многих гидробионтов, в частности у личинок ракообразных, головоногих, двустворчатых моллюсков и гребневиков, повышение давления вызывает движение вверх и положительный фототаксис, а снижениеобратную реакцию; очевидно, давление важный фактор, определяющий характер распределения жизни в толще воды. Интересно, что личинки МуШиз ейиИз реагируют на повышение давления всплыванием, а на более поздних стадиях эта реакция исчезает; такая смена реакций способствует расселению личинок на ранних стадиях и оседанию на более тхоздних. Установлено» что сжимаемость некоторых равноногих рачков и эвфаузиид на 1540% ниже, чем воды. С погружением вглубь плотность животных все более приближается к таковой воды, и они всегда могут найти такую глубину, где будут обладать устойчивой нейтральной плавучестью. В качестве одного из примеров своеобразного влияния высокого давления можно привести вызываемый им сдвиг в соотношении полов у морских гарпактицид рода Тщгюриз. Наупли-усы этого рачка, подвергнутые давлению атм, превращались только в самок, хотя в контрольной группе (давление 1 атм) преобладали самцы (84%); очевидно, высокое давление разрушала биохимическую систему, определяющую ^появление самцов.

Органами восприятия гидростатического давления служат различные газовые 'камеры (плавательные пузыри рыб, газовые включения в цитоплазме простейших, воздухоносные полости в подошве некоторых медуз, в раковинах головоногих и брюхоногих моллюсков и др.)- Изменение давления газа в ^камерах, воспринимаемое различными рецепторами, указывает глубину погружения организма. Точность определения глубины у некоторых гидробионтов может достигать нескольких сантиметров. Так, литоральные рачки ЗупсНеШшт реагируют на изменение давления до 0,01 атм, что соответствует разнице глубин в 10 см. Подобная, а иногда и большая чувствительность свойственна многим ракообразным и рыбам. Предполагается, что восприятие давления ракообразными связано ? образованием ими вокруг своего тела тончайшей газовой пленки.