Зачем физика нужна инженеру Презентацию подготовили ученицы ХI класса «А» МОУ Аннинский лицей Семынина Инна Гончаренко Екатерина.

Презентация:



Advertisements
Похожие презентации
История микроскопа Нет микроскопа, который бы так увеличивал, как глаза человека, любующегося собой. Александр Поп.
Advertisements

1. Что называется ценой деления шкалы? 2. Каков порядок действий при определении цены деления шкалы прибора? 3. Что называют погрешностью измерений? 4.
Дифракция механических волн - нарушение закона прямолинейного распространения волн. Дифракция происходит всегда, когда волны распространяются в неоднородной.
Что изучает физика. Физические явления, наблюдения и опыты.
История создания микроскопа. Виды микроскопов.
Микроскоп (греч. μικρός маленький и σκοπέω смотрю) лабораторная оптическая система для получения увеличенных изображений малых объектов с целью рассмотрения,
Оптика. Свет.. Определение. Оптика (от др.-греч. πτική появление или взгляд) раздел физики, рассматривающий явления, связанные с изменением во времени.
Связи между физическими величинами. Физические теории. Физика и техника. Физика и окружающий нас мир. Материал подготовлен Горнышковой Г.В. Учителем физики.
Дифракция света Характерным проявлением волновых свойств света является дифракция света отклонение от прямолинейного распространения на резких неоднородностях.
Презентация по физике на тему: Лупа. Выполнил ученик 9 класса Бобров Иван.
Курс общей физики проф. Тюрин Юрий Иванович Томский политехнический университет ЕНМФ Адрес: пр. Ленина, 43, г.Томск, Россия,
Дифракция света Дифракционная решетка. Повторение 1. Дисперсия это… 2. Цветность световых волн зависит от… 3. Источники называются когерентными, если…
Физика – наука о неживой природе. Науки естественного цикла География- наука о поверхности и недрах земли Биология – наука о живой природе Химия – наука.
Физика - основа техники. Урок 4. Развитие физики сопровождалось изменением представлений людей об окружающем мире. Отказ от привычных взглядов, возникновение.
Вводная лекция Лекция 1. Мир, окружающий нас материален: он состоит из вечно существующей и непрерывно движущейся материи. Материей, в широком смысле.
« Физический эксперимент в познании окружающего мира »
Электромагнитные излучения небесных тел. Электромагнитное излучение небесных тел основной источник информации о космических объектах. Исследуя электромагнитное.
Что такое научное исследование?. Что такое исследование? Исследование – это научное познание предметов и явлений окружающего мира. Наука – это особая.
Электронная и туннельная микроскопия Выполнила : Молодан Юлия У 4-02.
Транксрипт:

Зачем физика нужна инженеру Презентацию подготовили ученицы ХI класса «А» МОУ Аннинский лицей Семынина Инна Гончаренко Екатерина

План 1. Почему физика нужна инженеру? 2. Пример из истории, иллюстрирующий значение широкого физического горизонта при решении технических вопросов. 3. Итоги: «…знание физики для инженера – не роскошь, а необходимость…» (Л. И. Мандельштам).

Взаимосвязь физики и техники Физика составляет научный фундамент современной техники и её развития, включая такие направления, как ядерная энергетика, космическая техника, квантовая электроника, вычислительная техника, разработка наукоёмких, ресурсосберегающих технологий. В свою очередь, реализация новых физических идей многократно увеличивает базу и возможности физического эксперимента и его моделирования (исследование экстремальных состояний вещества, строения и эволюции Земли, Солнечной системы и дальнего Космоса, термоядерного синтеза, компьютерное моделирование и др.). Физика составляет научный фундамент современной техники и её развития, включая такие направления, как ядерная энергетика, космическая техника, квантовая электроника, вычислительная техника, разработка наукоёмких, ресурсосберегающих технологий. В свою очередь, реализация новых физических идей многократно увеличивает базу и возможности физического эксперимента и его моделирования (исследование экстремальных состояний вещества, строения и эволюции Земли, Солнечной системы и дальнего Космоса, термоядерного синтеза, компьютерное моделирование и др.). Знания об окружающих нас предметах и явлениях, накопленные учёными за много веков кропотливых наблюдений, размышлений и проведённых опытов, реализуются сегодня в виде самых разнообразных устройств, облегчающих и улучшающих нашу жизнь, лежат в основе научно-технического прогресса человечества. Знания об окружающих нас предметах и явлениях, накопленные учёными за много веков кропотливых наблюдений, размышлений и проведённых опытов, реализуются сегодня в виде самых разнообразных устройств, облегчающих и улучшающих нашу жизнь, лежат в основе научно-технического прогресса человечества.

Разнообразные технические объекты.

Многообразие современных измерительных приборов

Современная техника характеризуется высокими темпами её модернизации и автоматизации, унификацией, стандартизацией, интенсивным развитием энергетики, радиоэлектроники, химической технологии, широким использованием автоматики, ЭВМ и др. Современная техника характеризуется высокими темпами её модернизации и автоматизации, унификацией, стандартизацией, интенсивным развитием энергетики, радиоэлектроники, химической технологии, широким использованием автоматики, ЭВМ и др. Специалисты с высшим техническим образованием - инженеры (от франц. ingénieur, от лат. ingenium способность, изобретательность) – остаются в современном обществе самыми востребованными. Специалисты с высшим техническим образованием - инженеры (от франц. ingénieur, от лат. ingenium способность, изобретательность) – остаются в современном обществе самыми востребованными.

Почему физика нужна инженеру? 1. С физическими явлениями и законами инженер непосредственно встречается в своей практической деятельности: инженер-строитель, рассчитывая прочность сооружения, должен знать законы упругости, инженер-электротехник в проектировании осветительной сети должен знать законы переменного тока и т. д. 2. Знание физики самой по себе как цельной дисциплины с её специфической методикой позволяет не только находить решение сложных технических задач, но и открывать новые пути для дальнейшего технического прогресса.

Физические методы исследования Основными методами исследования в физике являются экспериментальный – как метод построения эмпирического (основанного на опыте) знания и теоретический – как метод построения теоретического знания. Эмпирическое знание можно построить, используя такие методы исследования, как наблюдение, измерение, опыт, моделирование. Опытные факты нуждаются в описании, обобщении, последующей интерпретации, т. е. в теоретическом осмыслении. Любая теоретическая гипотеза, в свою очередь, может быть подтверждена или опровергнута лишь эмпирическим путём. Основными методами исследования в физике являются экспериментальный – как метод построения эмпирического (основанного на опыте) знания и теоретический – как метод построения теоретического знания. Эмпирическое знание можно построить, используя такие методы исследования, как наблюдение, измерение, опыт, моделирование. Опытные факты нуждаются в описании, обобщении, последующей интерпретации, т. е. в теоретическом осмыслении. Любая теоретическая гипотеза, в свою очередь, может быть подтверждена или опровергнута лишь эмпирическим путём. Существует такой метод решения научных задач, как мысленный эксперимент, который предшествует реальному опыту, а в некоторых случаях заменяет его. В мысленном эксперименте физические тела можно поставить в такие условия, которые навозможно воспроизвести в реальности. Например, мысленный эксперимент с лифтом привёл Эйнштейна к принципу эквивалентности, лежащему в основе общей теории относительности. Существует такой метод решения научных задач, как мысленный эксперимент, который предшествует реальному опыту, а в некоторых случаях заменяет его. В мысленном эксперименте физические тела можно поставить в такие условия, которые навозможно воспроизвести в реальности. Например, мысленный эксперимент с лифтом привёл Эйнштейна к принципу эквивалентности, лежащему в основе общей теории относительности.

Пример, иллюстрирующий значение широкого физического горизонта при решении технических вопросов. Изобретение микроскопа открыло в биологии в середине XIX в. совершенно новые пути изучения явлений жизни. Исследователи ждали, что с постройкой микроскопов, увеличивающих в десятки, сотни тысяч и миллионов раз позволят проникнуть в самые сокровенные детали строения живой материи. Изобретение микроскопа открыло в биологии в середине XIX в. совершенно новые пути изучения явлений жизни. Исследователи ждали, что с постройкой микроскопов, увеличивающих в десятки, сотни тысяч и миллионов раз позволят проникнуть в самые сокровенные детали строения живой материи.микроскопа

При такой конъюнктуре специалисты- конструкторы оптических приборов с усиленной энергией взялись за усовершенствование микроскопа. При такой конъюнктуре специалисты- конструкторы оптических приборов с усиленной энергией взялись за усовершенствование микроскопа. Считалось, что можно достигнуть любых сколь угодно больших увеличений, а основная трудность сводится к преодолению технических трудностей. Считалось, что можно достигнуть любых сколь угодно больших увеличений, а основная трудность сводится к преодолению технических трудностей. В основе теории расчёта оптических приборов в то время лежали законы геометрической оптики, базирующиеся на основе понятия светового луча как прямой линии. В основе теории расчёта оптических приборов в то время лежали законы геометрической оптики, базирующиеся на основе понятия светового луча как прямой линии.

Световой луч в геометрической оптике

Однако работа по совершенствованию микроскопа не дала ожидаемых результатов: увеличение не удавалось сделать столь значительным, как предполагалось. Возникло противоречие между тем, что казалось достижимым на основе применения законов геометрической оптики, и тем, что достигалось на практике. Объяснения этому не находилось. Однако работа по совершенствованию микроскопа не дала ожидаемых результатов: увеличение не удавалось сделать столь значительным, как предполагалось. Возникло противоречие между тем, что казалось достижимым на основе применения законов геометрической оптики, и тем, что достигалось на практике. Объяснения этому не находилось.

К. Ф. Цейс, немецкий оптик-механик, основавший в 1846 году фирму в Йене (ныне «Карл Цейс Йена» в Германии) по производству оптических приборов и оптического стекла, пригласил для консультации молодого физика Аббе. Аббе обладал хорошей теоретической подготовкой, поэтому подошёл к вопросу о микроскопе с позиций более глубокого и совершенного знания – волновой оптики. К. Ф. Цейс, немецкий оптик-механик, основавший в 1846 году фирму в Йене (ныне «Карл Цейс Йена» в Германии) по производству оптических приборов и оптического стекла, пригласил для консультации молодого физика Аббе. Аббе обладал хорошей теоретической подготовкой, поэтому подошёл к вопросу о микроскопе с позиций более глубокого и совершенного знания – волновой оптики. Один из главных выводов, полученных Аббе, заключался в том, что волновая природа света ставит принципиальный предел увеличению микроскопа: если детали объекта меньше определённой величины, то эти детали не могут быть различимы из- за дифракционных явлений. Один из главных выводов, полученных Аббе, заключался в том, что волновая природа света ставит принципиальный предел увеличению микроскопа: если детали объекта меньше определённой величины, то эти детали не могут быть различимы из- за дифракционных явлений. Блестящими опытами Аббе подтвердил справедливость своих теоретических выводов. Блестящими опытами Аббе подтвердил справедливость своих теоретических выводов.

Дифракция ограничивает одну из главных характеристик микроскопа – его разрешающую способность. Разрешающая способность микроскопа характеризует способность давать раздельные изображения двух близких друг к другу точек объекта и определяется минимальным расстоянием между ближайшими точками, при котором эти точки ещё можно наблюдать раздельно. Дифракция ограничивает одну из главных характеристик микроскопа – его разрешающую способность. Разрешающая способность микроскопа характеризует способность давать раздельные изображения двух близких друг к другу точек объекта и определяется минимальным расстоянием между ближайшими точками, при котором эти точки ещё можно наблюдать раздельно. При малых размерах наблюдаемых в микроскоп объектов нельзя пренебрегать тем, что свет – это электромагнитная волна, поэтому полученные изображения следует рассматривать как результат интерференции световых волн, идущих от точек объекта. При малых размерах наблюдаемых в микроскоп объектов нельзя пренебрегать тем, что свет – это электромагнитная волна, поэтому полученные изображения следует рассматривать как результат интерференции световых волн, идущих от точек объекта. Из-за дифракции света изображение точки кружок (светлое пятно, окруженное кольцами). Из-за дифракции света изображение точки кружок (светлое пятно, окруженное кольцами).

Дифракционные явления

Увеличение современного оптического микроскопа Независимо друг от друга, Э. Аббе и Г. Гельмгольц вывели формулы, позволяющие оценить предел разрешения оптического микроскопа: принципиально нельзя с помощью оптического микроскопа рассмотреть какие-либо детали, размер которых меньше 0,4 λ. Волновые свойства света накладывают свои ограничения, которые нельзя преодолеть. Независимо друг от друга, Э. Аббе и Г. Гельмгольц вывели формулы, позволяющие оценить предел разрешения оптического микроскопа: принципиально нельзя с помощью оптического микроскопа рассмотреть какие-либо детали, размер которых меньше 0,4 λ. Волновые свойства света накладывают свои ограничения, которые нельзя преодолеть. Увеличение современного оптического микроскопа, достигает Предел разрешения для микроскопа составляет 0,25 мкм, тогда как для человеческого глаза он равен ~0,08 мм. Увеличение современного оптического микроскопа, достигает Предел разрешения для микроскопа составляет 0,25 мкм, тогда как для человеческого глаза он равен ~0,08 мм.

Современный оптический микроскоп

Современный оптический микроскоп с цифровой видеокамерой Эритроциты в оптическом микроскопе.

Электронный микроскоп В настоящее время в научных исследованиях широко применяется т. н. электронный микроскоп. В настоящее время в научных исследованиях широко применяется т. н. электронный микроскоп. Электронный микроскоп - вакуумный электронно-оптический прибор для наблюдения и фотографирования многократно (до 10 млн. раз) увеличенного изображения объектов, полученного с помощью пучков электронов, ускоренных до больших энергий. Предел разрешения электронного микроскопа составляет ~0,01- 0,1 нм. Электронный микроскоп - вакуумный электронно-оптический прибор для наблюдения и фотографирования многократно (до 10 млн. раз) увеличенного изображения объектов, полученного с помощью пучков электронов, ускоренных до больших энергий. Предел разрешения электронного микроскопа составляет ~0,01- 0,1 нм.

Электронный микроскоп (схема) Разрешающая способность зависит от длины волны, на которой работает прибор, поэтому разрешающая способность электронного микроскопа в 1000 раз больше разрешающей способности оптического микроскопа. Разрешающая способность зависит от длины волны, на которой работает прибор, поэтому разрешающая способность электронного микроскопа в 1000 раз больше разрешающей способности оптического микроскопа.

Современный электронный микроскоп

«…Знание, широкое, полное знание физики для инженера – не роскошь, а необходимость, … широкий физический горизонт должен быть достоянием не только тех избранных людей – инженеров, которым суждено прокладывать новые пути в технике, но и достоянием всякого инженера, сознательно относящегося к своему делу». «…Знание, широкое, полное знание физики для инженера – не роскошь, а необходимость, … широкий физический горизонт должен быть достоянием не только тех избранных людей – инженеров, которым суждено прокладывать новые пути в технике, но и достоянием всякого инженера, сознательно относящегося к своему делу». Л. И. Мандельштам.

МОУ Аннинский лицей сотрудничает с архитектурно- строительным (ВГАСУ) и аграрным (ВГАУ) университетами. МОУ Аннинский лицей сотрудничает с архитектурно- строительным (ВГАСУ) и аграрным (ВГАУ) университетами. ВГАСУ основан в 1930 г. В 1993г. институт был преобразован в государственную архитектурно-строительную академию, в 2000 г. получил статус университета. Вузом за годы своей работы подготовлено более 40 тыс. инженеров-строителей. Такие факультеты, как строительный, строительно- технологический, инженерных систем и сооружений, механико-автодорожный, автоматизации и информационных систем готовят инженеров разных строительных специальностей. ВГАСУ основан в 1930 г. В 1993г. институт был преобразован в государственную архитектурно-строительную академию, в 2000 г. получил статус университета. Вузом за годы своей работы подготовлено более 40 тыс. инженеров-строителей. Такие факультеты, как строительный, строительно- технологический, инженерных систем и сооружений, механико-автодорожный, автоматизации и информационных систем готовят инженеров разных строительных специальностей. Воронежский государственный аграрный университет имени К. Д. Глинки – первый вуз Центрального Черноземья России. Он был учреждён в июне 1912 года как Воронежский сельскохозяйственный институт императора Петра I. К факультетам, позволяющим получить профессию инженера, относятся: агроинженерный, землеустроительный, зооинженерный. Воронежский государственный аграрный университет имени К. Д. Глинки – первый вуз Центрального Черноземья России. Он был учреждён в июне 1912 года как Воронежский сельскохозяйственный институт императора Петра I. К факультетам, позволяющим получить профессию инженера, относятся: агроинженерный, землеустроительный, зооинженерный.

Нужна ли физика современному человеку? В нашем классе все ответили однозначно: не просто нужна, а важна. Для человека образованного не должно быть загадок в явлениях окружающего мира. Многие, в том числе и мы, собираются поступать в технические ВУЗы, получать инженерные специальности. В нашем классе все ответили однозначно: не просто нужна, а важна. Для человека образованного не должно быть загадок в явлениях окружающего мира. Многие, в том числе и мы, собираются поступать в технические ВУЗы, получать инженерные специальности. Как учиться физике? На этот вопрос дал ответ российский физик, один из основателей отечественной научной школы по радиофизике, академик АН СССР (1929) Л. И. Мандельштам: Как учиться физике? На этот вопрос дал ответ российский физик, один из основателей отечественной научной школы по радиофизике, академик АН СССР (1929) Л. И. Мандельштам:

«Ни учебник, ни учитель недостаточны, чтобы научить физике. Учащийся должен хоть немного работать опытно сам. Он должен хоть поверхностно, но сам слышать, сам осязать те явления, о которых ему говорят». «Ни учебник, ни учитель недостаточны, чтобы научить физике. Учащийся должен хоть немного работать опытно сам. Он должен хоть поверхностно, но сам слышать, сам осязать те явления, о которых ему говорят». Л. И. Мандельштам

Наш ХI «А» за работой

Использованные информационные ресурсы: 1. Л. Мандельштам. Почему физика нужна инженеру? (ж. «Квант», 2/1991). 2. Большая энциклопедия Кирилла и Мефодия 2006, 10 CD. 3. Иллюстрированный энциклопедический словарь, 2 CD. 4. Энциклопедия «Мир вокруг нас», CD. 5. Детская энциклопедия Кирилла и Мефодия 2006, 2 CD. 6. Физика, 7 – 11 классы. Библиотека наглядных пособий, CD и др.

Микроскоп Микроскоп (от греческого mikros малый и skopeo смотрю) - оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом. Микроскоп (от греческого mikros малый и skopeo смотрю) - оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом. Первый двухлинзовый микроскоп построил З. Янсен (Нидерланды) около С оптики-ремесленники во многих странах Европы изготавливают подобные микроскопы, а Галилей использует в качестве микроскопа сконструированную им зрительную трубу. Необычайного мастерства в шлифовании линз достиг А. ван Левенгук ( ), который сделал микроскоп из единственной линзы, но необычайно тщательно отшлифованной. Левенгук впервые наблюдал микроорганизмы. Первый двухлинзовый микроскоп построил З. Янсен (Нидерланды) около С оптики-ремесленники во многих странах Европы изготавливают подобные микроскопы, а Галилей использует в качестве микроскопа сконструированную им зрительную трубу. Необычайного мастерства в шлифовании линз достиг А. ван Левенгук ( ), который сделал микроскоп из единственной линзы, но необычайно тщательно отшлифованной. Левенгук впервые наблюдал микроорганизмы. Теоретический расчет сложных микроскопов дал немецкий физик Э. Аббе в Теоретический расчет сложных микроскопов дал немецкий физик Э. Аббе в 1872.