Вычисление объемов пространственных тел с помощью интеграла. Воробьев Леонид Альбертович, г.Минск.

Презентация:



Advertisements
Похожие презентации
Алгебра и начала анализа, 11 класс Понятие бесконечной интегральной суммы. Интеграл. Воробьев Леонид Альбертович, г.Минск – формула Ньютона-Лейбница.
Advertisements

Объем тела вращения 11 класс Автор: учитель математики и информатики Голос Г.И.
Объём пирамиды Объём пирамиды. Геометрия, 11 класс. 11 класс. Воробьев Леонид Альбертович, г.Минск.
ОБЪЕМЫ НАКЛОННОЙ ПРИЗМЫ, ПИРАМИДЫ, КОНУСА Геометрия 11 класс Р.О.Калошина ГОУ лицей 533 Санкт-Петербург.
Выполнила Криводушева Алеся 11-А класс Объемы тел 2010 г.
Тела вращения Телом вращения называется такое тело, которое плоскостями, перпендикулярными некоторой прямой (оси вращения), пересекается по кругам с центрами.
Объёмы тел Свойства: 1.Равные тела имеют равные объёмы. Объём всего тела складывается из объёмов составляющих его тел. 2.Если тело составлено из нескольких.
Объемы пространственных фигур фигурВычисление объемов геометрических тел с помощью определенного интеграла.
Северо-Западный Административный Округ, Школа69 им. Б.Ш.Окуджавы. Учитель математики Мищенко О. В Москва, г.
Тела вращения. Геометрия, 11 класс. Воробьев Леонид Альбертович, г.Минск x y 0 x=a x=b y = f ( x )
Понятие объема. Объем призмы. Геометрия, 11 класс Воробьев Леонид Альбертович, г.Минск.
Объёмы тел Понятие объёма Понятие объёма Свойства объёмов Свойства объёмов Объём прямоугольного параллелепипеда Объём прямоугольного параллелепипеда Объём.
Усеченный конус Сфера и шар. Определение : Тело, ограниченное двумя кругами, расположенными в параллельных плоскостях, и частью конической поверхности,
Презентация к уроку по теме: Презентация к уроку "Вычисление объёмов тел вращения. Применение Интеграла"
Объемы тел Объем прямоугольного параллелепипеда Объем прямоугольного параллелепипеда Объем прямой призмы и цилиндра Объем прямой призмы Объем наклонной.
1 Продолжить знакомство с формулами для вычисления объемов пространственных фигур 2.
Математические диктанты. Двугранный, трёхгранный углы. Многогранник. Вопрос 1. Сколько рёбер у двугранного угла? 2. Сколько рёбер у трёхгранного угла?
V = 1/3 S h Задача на вычисление объёма пирамиды Основанием пирамиды является ромб со стороной 6 см. Каждый из двугранных углов при основании равен 45.
Объём шара, шарового сегмента, шарового слоя и шарового сектора.
НАЧАЛЬНЫЕ СВЕДЕНИЯ ИЗ СТЕРЕОМЕТРИИ МНОГОГРАННИКИ.
Транксрипт:

Вычисление объемов пространственных тел с помощью интеграла. Воробьев Леонид Альбертович, г.Минск

Немного теории. Чтобы получить представление об общем методе вычисления объемов различных пространственных фигур, попробуем найти объем лимона. Ни на одно из тел, изучаемых в школе (призма, пирамида, шар, конус и т.д.), лимон не похож. Однако, мы можем поступить как все хозяйки – разрезать лимон на тонкие ломтики, размер которых зависит от расстояния x, причем x [0;H]. H x Тогда, по свойству объема, сумма объемов всех ломтиков даст нам объем всего лимона.

Немного теории. H x x С точки зрения геометрии мы построили сечения пространственной фигуры плоскостями, перпендикулярными оси фигуры; причем, если принять число разбиений бесконечно большим числом (n ), то: Проще говоря, при бесконечном числе разбиений каждый ломтик «вырождается» в плоское сечение и объем лимона равен бесконечной интегральной сумме площадей таких сечений, зависящих от расстояния x, т.е. где H – высота тела, а S сеч. – некоторая функция, зависящая от x, причем x [0;H]. S сеч.

Немного теории (базовые классы могут пропустить). H x x Если принять число разбиений бесконечно большим числом (n ), то: где H – высота тела, а S сеч. – некоторая функция, зависящая от x, причем x [0;H]. S сеч.

I. Объем прямоугольного параллелепипеда с высотой H и площадью основания S. x H x [0;H] 0 Площадь сечения не изменяется в любой точке отрезка от 0 до H и равна площади основания. x

II. Объем прямой призмы с высотой H и площадью основания S. x x [0;H] H 0 Площадь сечения не изменяется в любой точке отрезка от 0 до H и равна площади основания. x

III. Объем n-угольной прямой призмы с высотой H и площадью основания S. x x [0;H] H 0 Площадь сечения не изменяется в любой точке отрезка от 0 до H и равна площади основания. x

IV. Объем наклонной призмы с высотой H и площадью основания S. Площадь сечения, перпендикулярного высоте, не изменяется в любой точке отрезка от 0 до H и равна площади основания. x H x [0;H] 0 x

V. Объем треугольной пирамиды с высотой H и площадью основания S. H x x [0;H] x Площадь сечения изменяется в зависимости от расстояния x, причем отношение площади основания к площади сечения равно квадрату коэффициента подобия соответственных треугольников, т.е.: 0

VI. Объем n-угольной пирамиды с высотой H и площадью основания S. H x Площадь сечения изменяется в зависимости от расстояния x, причем отношение площади основания к площади сечения равно квадрату коэффициента подобия соответственных n-угольников, т.е.: x x [0;H] 0

VII. Объем усеченной пирамиды. текст

VIII. Объем цилиндра с высотой H и площадью основания S. x x [0;H] H 0 x Площадь сечения не изменяется в любой точке отрезка от 0 до H и равна площади основания.

IX. Объем конуса с высотой H и площадью основания S. x x [0;H] H x Площадь сечения изменяется в зависимости от расстояния x, причем отношение площади основания к площади сечения равно квадрату коэффициента подобия соответственных кругов, т.е.: 0

X. Объем усеченного конуса. текст

XI. Объем шара с радиусом R. Найдем объем полушария, как бесконечную интегральную сумму площадей сечения с радиусом r, где: R x Значит, объем всего шара равен: x 0 r

XII. Объем шарового сегмента. Вывод объема шарового сегмента с высотой h и радиусом основания r отличается от вывода объема полушария нижним пределом интегрирования. В данном случае он равен R – h : r R h x h r Обратите внимание, что в формуле объема шарового сегмента участвует радиус шара ( R ), а не радиус основания сегмента ( r )!

XIII. Объем шарового слоя. текст

XIV. Объем шарового сектора. текст h r R