Тема: Особенности цветового зрения человека Бочкарева Ольга 10 класс Научный руководитель: Румянцева Т.Н.

Презентация:



Advertisements
Похожие презентации
Биофизика цветного зрения. Феноменология цветовосприятия Зрительный мир человека с нормальным цветовым зрением чрезвычайно насыщен цветовыми оттенками.
Advertisements

Презентация ко дню недели биологии в ГБОУ СОШ Работу выполнила учитель биологии ГБОУ СОШ 1283 Лозовская Светлана Анатольевна Москва – 2012.
Дальтонизм.
Один из самых наглядных примеров дисперсии разложение белого света при прохождении его через призму (опыт Ньютона).
Строение и функции зрительного анализатора. Рассмотрим внешнее строение глаза. Бровь Веко Ресницы Рассмотрим внешнее строение глаза.
Презентация к уроку биологии Анализаторы (органы чувств), их строения и функции, зрительный анализатор Презентация к уроку биологии Анализаторы (органы.
(с) 2006 Олег Шишкин 1 Синтез цвета в полиграфии Каф. ТПП.
Понятие об анализаторах Органы чувств как элементы строения анализаторов Строение и функции зрительного анализатора Посредством глаза, а не глазом Cмотреть.
Глаза - окно в окружающий мир Проект «Берегите зрение!»
Работу выполнил ученик 9а класса Швецов Саша Росляков Женя.
Встречается ли фотоэффект в природе? Выполнили:. Цель работы: Мы попробуем вам объяснить существует ли фотоэффект в природе. Но для начала мы расскажем.
Глаз. Оптическая схема. Глаз. Оптическая схема. Строение глаза Строение глаза Оптическая схема.
Этот орган можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с его помощью. Ещё Г. Гельмгольц считал, что его моделью является.
Сенсорные зоны - это функциональные зоны коры головного мозга, которые через восходящие нервные пути получают сенсорную информацию от большинства рецепторов.
Органы чувств У человека выделяют следующие органы чувств: зрения (глаз), слуха (ухо), обоняние (нос), вкуса (язык) и осязания (кожа). Органы чувств –
Зрительное восприятие. Гигиена зрения.. Цель урока : На основе понятий строения и функций глаза выяснить как возникают изображения предметов на сетчатке.
Дисперсия света – зависимость показателя преломления света от частоты его колебаний. Позже выяснили, что скорость цветных волн зависит от их частоты колебаний.
Физиология человека и животных Лекция 9 Физиология анализаторов.
ЛИНЗЫ И ИХ ПРИМЕНЕНИЕ Выполнила ученица 11 а Малышева Ксения.
Глаза — орган зрения. Зрительный анализатор.
Транксрипт:

Тема: Особенности цветового зрения человека Бочкарева Ольга 10 класс Научный руководитель: Румянцева Т.Н.

Цветовое зрение- способность живого организма различать спектральный состав излучений или узнавать окраску предметов

Основоположниками современной теории света являются И. Ньютон, Гюйгенс, Юнг, Гельмгольц, Максвелл, Герц и другие. В работах этих исследователей была выяснена физическая природа света, показано, что белый свет представляет собой смесь излучений, имеющих разную длину волны. Практически человеческий глаз способен различать цвета излучений с длиной волны от 396 нм (глубокий фиолетовый) до 760 нм (крайний красный). Спектральная чувствительность глаза человека базируется на работе цветоприемников, имеющих максимумы на кривой спектральной чувствительности в красной, зеленой и синей областях спектра. В зависимости от того, какой цветоприемник отсутствует у человека, лиц с нарушенным цветоощущением можно разбить на основные группы: протанопы, дейтеранопы, тританопы, палочковые и колбочковые монохроматы.

Цель работы: Изучить теорию цветового зрения и анатомо-физиологические особенности функционирования фоторецепторов сетчатки глаза Задачи работы: 1.Изучить особенности работы фоторецепторов, ганглиозных клеток и рецептивных полей сетчатки глаза; 2. Рассмотреть причины нарушения цветового зрения

Основоположники теории света Исаак Ньютон ( ) Максвелл Джеймс Клерк ( )

Сетчатка (лат. retína) внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; Сетчатка глаза у взрослого человека имеет размер 22 мм покрывает около 72 % площади внутренней поверхности глазного яблока; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы;

RPE пигментный эпителий сетчатки OS наружный сегмент фоторецепторов IS внутренний сегмент фоторецепторов ONL внешний ядерный слой OPL внешний сплетениевидный слой INL внутренний ядерный слой IPL внутренний сплетениевидный слой GC ганглионарный слой BM мембрана Бруха P пигментные эпителиоциты R палочки C колбочки Стрелка и пунктирная линия внешняя пограничная мембрана H горизонтальные клетки Bi биполярные клетки M Клетки Мюллера A амакриновые клетки G ганглионарные клетки AX аксоны

Зрительная часть сетчатки на микроскопическом уровне и состоит из 10-ти слоёв: пигментного, фотосенсорного, наружной пограничной мембраны, наружного зернистого слоя, наружного сплетениевидного слоя, внутреннего зернистого слоя, внутреннего сплетениевидного слоя, ганглионарных клеток, слоя волокон зрительного нерва, внутренней пограничной мембраны.

Сетчатка позвоночных животных содержит пять типов клеток, различающихся как морфологически, так и функционально. Это - фоторецепторы (палочки и колбочки), горизонтальные, биполярные, амакриновые и ганглиозные клетки. Сигналы в сетчатке передаются от фоторецепторов к биполярным, а от них к ганглиозным клеткам. Функции горизонтальных клеток, по всей видимости, заключаются в обеспечении латерального взаимодействия на уровне переключения от фоторецепторов к биполярам, а амакриновых клеток - при переключении от биполяров к ганглиозным клеткам.

Восприятие света позвоночными начинается с того, что квант света, попавший в его глаз, запускает сложную цепь биохимический превращений светочувствительных пигментов, содержащихся в фоторецепторах. В результате под влиянием фотохимических процессов, меняется мембранный потенциал фоторецептора и это изменение поддерживается в течении всего времени действия света, причем освещение фоторецептора всегда вызывает его гиперполяризацию. При уменьшении освещенности мембранный потенциал уменьшается (фоторецептор диполяризуется )

Проводящие пути зрительного анализатора: 1 Левая половина зрительного поля, 2 Правая половина зрительного поля, 3 Глаз, 4 Сетчатка, 5 Зрительные нервы, 6 Глазодвигательный нерв, 7 Хиазма, 8 Зрительный тракт, 9 Латеральное коленчатое тело, 10 Верхние бугры четверохолмия, 11 Неспецифический зрительный путь, 12 Зрительная кора головного мозга.

Очевидно, цветовое зрение животного целиком зависит от того, насколько различны реакции фоторецепторных клеток на раздражение светом разной длины волны, либо различного спектрального состава, так как никакая обработка на высших уровнях зрительно системы не в состоянии обеспечить различение спектрального состава излучений, если они окажутся неразличимыми для фоторецепторов. Следовательно, для излучения механизмов цветового зрения, в первую очередь нужно исследовать спектральную чувствительность самих приемников сетчатки. Биохимическими и электрофизиологическими исследованиями показано, что восприятие света в скотопическом диапазоне происходит палочками, которые содержат светочувствительный пигмент - родопсин.

Зависимость восприятия цвета от длины волны

Химические превращения родопсина при поглощении его молекулой кванта света не зависят от длины световой волны. Следовательно, у животных, сетчатка которых содержит исключительно палочки, обладают лишь одним цветоприемником. Система, работа которой базируется на одном цветоприемнике, в принципе не должна обладать способностью к дифференцировке раздражителей по цвету, если, конечно, не будут применены какие либо специальные методы (например, использованы цветные фильтры).

Все зрительные пигменты построены одинаковым образом: 1,1-цис- ретиналь+опсин. В природе существуют два ретиналя:1-ретиналь и 2-ретиналь. Соединяясь с двумя родопсинами- колбочковым и палочковым, дают четыре вида пигментов, имеющих различные значения максимумов на кривых спектре поглощения. Согласно данным Уолда, эти пигменты имеют следующие максимумы поглощения: родопсин нм, иодопсин -562 нм, порфиропсин нм и цианопсин нм. В дальнейшем было показано что у разных животных максимумы спектра поглощения пигментов, основанных на одном и том же хромофоре, различаются столь значительно, что деление их на четыре типа весьма условно.

Для точной характеристики спектральной чувствительности глаза необходимо знать число его цветоприемников, наличие в них соответствующих пигментов, локализацию этих пигментов в определенных рецепторах и т.д. Получить ответ на многие из этих вопросов позволяет разработанная сравнительно недавно техника микроспектрометрирования глаза. Методом прижизненного измерения поглощения света в рецепторном слое сетчатки человека, разработанном Раштоном, было установлено, что каждому приемнику человека соответствует свойственный лишь ему пигмент. Сопоставление этих результатов с данными, полученными при использовании других методов, позволяет заключить, что цветовое зрение человека обеспечивается тремя пигментами, с максимумами спектра поглощения на 440, 540 и 570 нм

микроспектромикроскоп

От биполяров сигнал передается к ганглиозным клеткам сетчатки, которые представляют собой типичные нейроны, встречающиеся в центральной нервной системе. В зависимости от того, с каким биполяром контактирует ганглиозная клетка, она будет генерировать спайковый разряд либо в ответ на освещение ( включение света) связанных с нею через биполяры рецепторов (on - клетка), либо в ответ на затемнение ( выключение света) - off - клетка.

Меланинопсинсодержащая ганглиозная клетка сетчатки

В 1938 году Хартлайном было введено понятие «рецептивного поля». Под рецептивным полем ганглиозной клетки подразумевается тот участок сетчатки, при раздражении которого в конечном итоге меняется частота разрядов данной ганглиозной клетки. Как известно, в сетчатке проявляется довольно четко выраженное латеральное торможение, которое на уровне биполярных клеток осуществляется горизонтальными, а на уровне ганглиозных клеток - амакриновыми клетками. Следовательно при воздействии света на рецепторы к ганглиозной клетке из разных точек сетчатки должны поступать не только возбуждающие влияния, но также и тормозящие. Совокупность этих воздействий, в свою очередь, будет определять функциональную организацию рецептивного поля ганглиозной клетки.

Концентрические рецептивные поля состоят из круглой центральной возбуждающей зоны, которая окружена со всех сторон тормозной периферией. В этом случае деление клеток на типы ведется с учетом характера их реакций на раздражение различных зон рецептивного поля. Нейроны, возбуждающиеся при освещении центральной зоны рецептивного поля, относятся к on - нейронам, а возбуждающиеся затемнением центральной зоны к off - нейронам. В тоже время on - нейрон возбуждается при затемнении периферии, а off - нейрон при ее освещении.

Размеры рецептивных полей ганглиозных клеток существенно различается у разных видов животных. При этом считается, что с размерами рецептивных полей связана острота зрения животного - чем уже рецептивное поле, тем более мелкие детали изображения может различить зрительная система. Этот вывод подкрепляется данными измерений размеров рецептивных полей ганглиозных клеток, связанных с центральными и периферическими участками сетчатки.

Среди других свойств нейронов, связанных с организацией их рецептивных полей, следует отметить избирательность к направлению движения видимых объектов. Такие клетки дают максимальные разряды, когда стимул движется через рецептивное поле в строго определенном направлении, которое таким образом, оказывается предпочитаемым для данного нейрона. Ганглиозные клетки сетчатки обладающие избирательностью к направлению движения, изучены в сетчатках многих видов млекопитающих, в том числе и в сетчатке кошки.

Трехкомпонентная теория цветового зрения Цветовое зрение основано на трех независимых физиологических процессах. В трехкомпонентной теории цветового зрения (Юнг, Максвелл, Гельмгольц) постулируется наличие трех различных типов колбочек, которые работают как независимые приемники, если освещенность имеет фотопический уровень. Комбинации получаемых от рецепторов сигналов обрабатываются в нейронных системах восприятия яркости и цвета. Правильность данной теории подтверждается законами смешения цветов, а также многими психофизиологическими факторами. Например, на нижней границе фотопической чувствительности в спектре могут различаться только три составляющие - красный, зеленый и синий. Первые объективные данные, подтверждающие гипотезу о наличии трех типов рецепторов цветового зрения, были получены с помощью микроспектрофотометрических измерений одиночных колбочек, а также посредством регистрации цветоспецифичных рецепторных потенциалов колбочек в сетчатках животных, обладающих цветовым зрением.

С помощью трех диапроекторов и трех фильтров на экран проецируются три перекрывающихся пятна (красное, зеленое и синее). Красное и зеленое при наложении дают желтый цвет, синее и зеленое бирюзовый, красное и синее пурпурный, а все три вместе белый цвет. Рецепторы сетчатки образуют мозаику, состоящую из палочек и трех типов колбочек. Данная схема могла бы отображать участок сетчатки в нескольких градусах от центральной ямки, где колбочек больше, чем палочек.

Цветовой график трехкомпонентной теории. На контуре указаны длины волн в нанометрах.

Теория оппонентных цветов (теория Геринга) Геринг предполагал, что имеются четыре основных цвета - красный, желтый, зеленый и синий - и что они попарно связаны с помощью двух антагонистических механизмов - зелено-красного механизма и желто- синего механизма. Из-за полярного характера восприятия этих цветов Геринг назвал эти цветовые пары оппонентными цветами. Предложенные Герингом оппонентные механизмы получили частичную поддержку после того, как научились регистрировать активность нервных клеток, непосредственно связанных с рецепторами. У клеток красно-зеленого канала мембранный потенциал покоя изменяется и клетка гиперполяризуется, если на ее рецептивное поле падает свет спектра нм, и деполяризуется при подаче стимула с длиной волны больше 600 нм. Клетки желто-синего канала гиперполяризуются при действии света с длиной волны меньше 530 нм и деполяризуются в интервале нм. На основании таких нейрофизиологических данных можно составить несложные нейронные сети, которые позволяют объяснить, как осуществить взаимную связь между тремя независимыми системами колбочек, чтобы вызвать цветоспецифическую реакцию нейронов на более высоких уровнях зрительной системы

Теория Геринга позволила объяснить не только все спектральные цвета и уровни насыщенности, но и такие цвета, как коричневый и оливково-зеленый, которые отсутствуют в радуге и даже не могут быть воспроизведены ни в одной из классических психофизических процедур смешения цветов, в которых мы с помощью диапроектора отбрасываем световые пятна на темный экран.

В свое время между сторонниками каждой из описанных теорий велись жаркие споры. Однако сейчас эти теории можно считать взаимно дополняющими интерпретациями цветового зрения. В зонной теории Крисса, предложенной 80 лет назад, была сделана попытка синтетического объединения этих двух конкурирующих теорий. Она показывает, что трехкомпонентная теория пригодна для описания функционирования уровня рецепторов, а оппонентная теория - для описания нейронных систем более высокого уровня зрительной системы.

Различные патологические изменения, нарушающие цветовосприятие, могут происходить на уровне зрительных пигментов, на уровне обработки сигналов в фоторецепторах или в высоких отделах зрительной системы, а также в самом диоптрическом аппарате глаза. Случаи нарушения цветовосприятия только одним глазом крайне редки. В последнем случае больной имеет возможность описывать субъективные феномены нарушенного цветового зрения, поскольку может сравнивать свои ощущения, полученные с помощью правого и левого глаза.

Аномалиями обычно называют те или иные незначительные нарушения цветовосприятия. Они передаются по наследству как рецессивный признак, сцепленный с X-хромосомой. Лица с цветовой аномалией все являются трихроматами, т.е. им, как и людям с нормальным цветовым зрением, для полного описания видимого цвета необходимо использовать три основных цвета. Однако аномалы хуже различают некоторые цвета, чем трихроматы с нормальным зрением, а в тестах на сопоставление цветов они используют красный и зеленый цвет в других пропорциях. Тестирование на аномалоскопе показывает, что при протаномалии в цветовой смеси больше красного цвета, чем в норме, а при дейтераномалии в смеси больше, чем нужно, зеленого. В редких случаях тританомалии нарушается работа желто-синего канала.

Различные формы дихроматопсии наследуются как рецессивные сцепленные с Х-хромосомой признаки. Дихроматы могут описывать все цвета, которые видят, только с помощью двух чистых цветов. Как у протанопов, так и у дейтеранопов нарушена работа красно-зеленого канала. Протанопы путают красный цвет с черным, темно-серым, коричневым и в некоторых случаях, подобно дейтеранопам, с зеленым. Определенная часть спектра кажется им ахроматической. Для протанопа эта область между 480 и 495 нм, для дейтеранопа - между 495 и 500 нм. Редко встречающиеся тританопы путают желтый цвет и синий. Сине-фиолетовый конец спектра кажется им ахроматическим - как переход от серого к черному. Область спектра между 565 и 575 нм тританопы также воспринимают как ахроматический.

Из работ Дж. Уолда, У. Раштона и многих других мы знаем, что в основе обычных форм цветовой слепоты, имеющейся примерно у 8 процентов мужчин, лежит отсутствие или нехватка одного или нескольких типов колбочек. Число возможных комбинаций отсутствия или количественного недостатка тех или иных колбочек делает цветовую слепоту весьма сложным объектом исследования. Иногда цветовая слепота возникает в левом или правом поле зрения после локального инсульта в контралатеральном или ипсилатеральном полушарии. При этом, вероятно, повреждается какая-то высшая корковая зрительная зона, расположенная выше стриарной коры и зоны 18, зона, названная V4 Семиром Зеки из Университетского колледжа.

Тест на цветовую слепоту. На левой картинке люди, страдающие красно- зеленой слепотой могут увидеть только цифру 5, или только цифру 7, могут вообще ничего не увидеть. Аналогично с правой картинкой – люди с красно-зеленой слепотой ничего не увидят.

В обычных условиях в глаз попадают излучения с различными длинами волн. Ощущение цвета, зависит от способности видеть один результирующий цвет, определяемый согласно законам оптического смещения цветов (закон Грассмана), а экспериментальное подтверждение получены в работах Максвелла и др. В случаях нарушений цветового зрения у человека отсутствует один из цветоприемников, или же отдельные приемники имеют аномальные спектральные характеристики. Изучение нарушений цветового зрения, кроме случаев полного отсутствия цветоощущения, связано с определенными трудностями и выявляется в большинстве случаев только специальными тестами, так как сами больные часто не подозревают о своем заболевании. Люди с аномалиями палочкового аппарата воспринимают цвет нормально, однако у них значительно снижена способность к темновой адаптации. Причиной такой ночной слепоты, или никталопии, может быть недостаточное содержание в употребляемой пище витамина А1, который является исходным веществом для синтеза ретиналя.

Ганглиозные клетки представляют собой типичные нейроны, встречающиеся в центральной нервной системе. В зависимости от того, с каким биполяром контактирует ганглиозная клетка, она генерирует спайковый разряд, отвечающий за возникновение зрительного сигнала. Рецептивное поле ганглиозных клеток отвечают за остроту зрения животного - чем уже рецептивное поле, тем более мелкие детали изображения может различить зрительная система.

Существует ряд теорий цветовосприятия: Крисса, Геринга и трекхомпонентная теория. Цветовое зрение основано на работе трехкомпонентной теории цветового зрения, обусловленное наличием трех различных типов колбочек. По особенности цветоощущения людей с аномальным зрением дифференцируют на: -Протанопию, или красно-слепые субъекты, не воспринимают темно-красные цвета. -Дейтеранопию иногда называют «слепотой на зеленый», однако в сущности такое название не соответствует действительности, так как чувствительность дейтеранопов к зеленому почти такая же, как у нормальных людей. -Тританопию (сине-слепые) видят только оттенки красного и голубовато-зеленого. -Кроме этих трех основных видов частичной цветовой слепоты, встречаются еще несколько нетипичных случаев, вплоть до полного отсутствия цветоощущения. Такие лица, в свою очередь делятся на две группы: палочковые и колбочковые монохроматы

1.Дж. Дудел, М. Циммерман, Р. Шмидт, О. Грюссер и др. Физиология человека, 2 том, перевод с английского, Мир, Гл. Ред. Б.В. Петровский. Популярная медицинская энциклопедия, ст.. Зрение, Цветовое зрение, Советская энциклопедия, В.Г. Елисеев, Ю.И. Афанасьев, Н.А. Юрина. Гистология, Медицина, 1983