Ионизирующее излучение: основные термины, понятия, механизмы Тема 2 Первичные процессы поглощения энергии ионизирующих излучений. Типы ионизирующих излучений,

Презентация:



Advertisements
Похожие презентации
Открытие радиоактивности.
Advertisements

Студентки 3 курса Новиковой Анастасии Владиславовны 1.
Ученица 9 класса Дунисова Галина. Гамма-излучение (гамма-лучи, γ-лучи) вид электромагнитного излучения с чрезвычайно малой длиной волны < 5×10 3 нм и,
ИОНИЗИРУЮЩИЕ ИОНИЗИРУЮЩИЕИЗЛУЧЕНИЯ Исмоилов Мухамадазиз 156 группа 1.
Гамма-излучение (гамма-лучи, γ-лучи) вид электромагнитного излучения с чрезвычайно малой длиной волны < 5×10 3 нм и, вследствие этого, ярко выраженными.
Радиоактивность - явление испускания атомами невидимых проникающих излучений Радиоактивность - явление испускания атомами невидимых проникающих излучений.
Презентация к уроку по ОБЖ (8 класс) по теме: Ионизирующее излучение.
* Источниками облучения являются естественный радиационный фон Земли, техногенно измененный естественный фон и искусственный радиационный фон. В результате.
Синхротронное излучение в диагностике наносистем 4-й курс 8-й семестр 2007/2008 Лекция 2.
Ионизирующее излучение. Ионизирующее излучение - излучение, взаимодействие которого с веществом приводит к образованию в этом веществе ионов разного знака.
Типы ядерных превращений. Взаимодействие ИИ с веществами. Виды ИИ и их характеристика.
Ионизирующие излучения и их взаимодействие с веществом Лекция 3.
Работа Саулина. Для биологического действия радиоактивных излучений характерен ряд общих закономерностей: 1) Глубокие нарушения жизнедеятельности вызываются.
ОСНОВЫ ДОЗИМЕТРИИ ОСНОВЫ ДОЗИМЕТРИИ Лекция 1. ЯВЛЕНИЕ РАДИОАКТИВНОСТИ Носовский Анатолий Владимирович д-р. техн. наук, проф.
Радиоактивность. Общие понятия.. Атом. Химический элемент., где: X – обозначение химического элемента Z – заряд ядра A – массовое число.
1 Взаимодействие нейтронов с веществом 1.Природа сил взаимодействия нейтронов с веществом. 2.Общая характеристика сечений взаимодействия. 3.Виды взаимодействия.
Физика атома и атомного ядра. Состав атомных ядер ядра различных элементов состоят из двух частиц – протонов и нейтронов. протоновнейтронов Протон m p.
РАДИОАКТИВНОСТЬ. АЛЬФА-, БЕТА-, ГАММА-РАСПАД АТОМНОГО ЯДРА. Автор презентации: Лебедева Марина Геннадьевна МБОУ СОШ с углубленным изучением отдельных предметов.
Линейные ускорители 1 эВ = 1,60·1019 Дж = 1,602·1012 эрг. Наибольший линейный ускоритель работал в гг. в Стэнфорде (США). Он имел длину ~ 3 км.
Взаимодействие ионизирующих излучений с веществом.
Транксрипт:

Ионизирующее излучение: основные термины, понятия, механизмы Тема 2 Первичные процессы поглощения энергии ионизирующих излучений. Типы ионизирующих излучений, их взаимодействие с веществом (механизмы поглощения энергии). Относительная биологическая эффективность ионизирующих излучений, линейная передача энергии. Основные физические величины радиобиологии и единицы их измерения.

Основные физические величины радиобиологии и единицы их измерения Радионуклид - Радиоактивный нуклид (изотоп), ядро которого способно к радиоактивному распаду. Активность радионуклида – скорость, с которой происходит радиоактивный распад нуклеотида. В международной системе единицей активности является беккерель (Бк). 1 Бк = 1 распад в секунду. (Удельная активность (Бк/кг), коэффициент накопления или перехода (КН или КП)) Доза излучения (экспозиционная доза) измеряется для получения представления о количестве энергии ионизирующего излучения, падающей на объект за время облучения. Размерность экспозиционной дозы – это заряд, возникающий в единице массы поглотителя, в международной системе единиц - Кл/кг (кулон на килограмм). Также в настоящее время широко применяют внесистемную единицу – Р (Рентген). Доза облучения (поглощенная доза) – это величина энергии ионизирующего излучения, переданная веществу. В международной системе единиц поглощенная доза излучения измеряется в Греях (Гр). 1 Гр= 1Дж/кг. Мощность дозы. Эта величина характеризует скорость увеличения дозы за единицу времени. Измеряется в Гр/с или Кл/(кг * с). Эквивалентная доза, эффективная доза

Основные физические величины радиобиологии

Ионизирующее излучение (излучение) – энергия, испускаемая каким-либо источником (электромагнитное, тепловое, гравитационное, космическое, ядерное) Радиация (излучение) – энергия, испускаемая каким-либо источником (электромагнитное, тепловое, гравитационное, космическое, ядерное) Ионизирующее излучение - излучение с энергией выше потенциала ионизации (>10 эВ) – способно ионизировать атомы и молекулы поглотителя Ионизирующее излучение - излучение с энергией выше потенциала ионизации (>10 эВ) – способно ионизировать атомы и молекулы поглотителя обладает двумя отличительными свойствами: Ионизирующее излучение обладает двумя отличительными свойствами: - способно проникать через вещество; - проходя через вещество взаимодействует с атомами и молекулами, что приводит к их возбуждению и ионизации;

Физическая природа ионизирующих излучений Типы ионизирующих излучений: Корпускулярные – частицы (электроны и позитроны - β- частицы; ядра атомов водорода – протоны, дейтерия – дейтроны, гелия - α-частицы и др.; нейтроны; нестабильные частицы – π +,-,0 -мезоны и др.) Электромагнитные - коротковолновое излучение (рентгеновское, гамма-излучение) -

Спектр электромагнитных излучений

γ - излучение Диапазон энергий гамма-квантов: 2,6 кэВ – 7,1 МэВ. Гамма-кванты испускаются - - ядрами атомов при изменении их энергетического состояния; - - при аннигиляции электрона и позитрона Если аннигилируют практически неподвижные е- и е+, то фотоны уносят энергию, равную сумме энергий покоя е- и е+, т.е. энергию 2mс 2 = 2*0.511 МэВ = МэВ, где m – масса электрона и позитрона. Фотоны разлетаются в противоположные стороны и каждый уносит энергию МэВ.

Рентгеновское излучение (Х-лучи) - - тормозное, с непрерывным спектром – испускается заряженными частицами высоких энергий (обычно е - ) при торможении в кулоновском поле ядра. Применяется в рентгеновских трубках; - - характеристическое, с линейчатым спектром - испускается атомом при заполнении вакансий на внутренних электронных оболочках, образованных в результате его взаимодействия с ускоренными электронами. Применяется для рентгено- структурного анализа Энергетический спектр фотонов у тормозного излучения как функция Eg г. Нобелевская премия за открытие характеристического рентгеновского излучения (Чарлз Баркле)

Синхротронное излучение (или магнитотормозное) Испускается: - - заряженными частицами, движущимися по круговым орбитам со скоростями, близкими к скорости света в вакууме. Изменение направления движения электрона происходит под действием магнитного поля. Рентгеновское, синхротронное и гамма- излучение при одинаковой энергии имеют одинаковые свойства и различаются только способом происхождения.

Нобелевские премии за исследования рентгеновских лучей и открытия, сделанные с их помощью ( гг) в 1901 г. Нобелевская премия за открытие X-лучей (В.Рентгену); в 1913 г. Генри Мозли изучая рентгеновские спектры элементов доказал: порядковый номер элемента в периодической системе численно равен заряду ядра его атома. Но получить высшую научную награду Мозли не довелось: он трагически погиб через два года после своего открытия при высадке английского десанта в проливе Дарданеллы; в 1914 г. Нобелевская премия за открытие дифракции рентгеновских лучей (М. фон Лауэ); в 1915 г. Нобелевская премия за изучение структуры кристаллов с помощью рентгеновских лучей присуждена отцу и сыну Брэггам Уильям Генри и Уильям Лоренс, которые заложили основы рентгено-структурного анализа; в 1917 г. Нобелевская премия за открытие характеристического рентгеновского излучения (Чарлзу Баркле); Поскольку во время войны поездки были ограничены, церемонию награждения пришлось отложить, и только в 1920 г. Баркла смог прочитать свою Нобелевскую лекцию "Характеристическое рентгеновское излучение"; в 1922 г. Нобелевская премия за разработку теории периодической системы элементов, используя закономерности изменения рентгеновских спектров (Нильсу Бору); в 1922 г. Открытие элемента Гафний по рентгеновским спектрам (А.Довийе); в 1924 г. Нобелевская премия за исследования спектров в диапазоне рентгеновских лучей (К.Сигбану); в 1925 г. Открытие элемента Рений по рентгеновским спектрам (супруги Ноддак)

Нобелевские премии за исследования рентгеновских лучей и открытия, сделанные с их помощью ( гг) в 1927 г. Нобелевская премия за открытие рассеяния рентгеновских лучей на свободных электронах вещества (А.Комптону). Артур Комптон в 1923 г. обнаружил эффект (назван его именем), который сыграл крайне важную роль в развитии квантовой теории в 20-х гг; в 1936 г. Нобелевская премия за вклад в изучение молекулярных структур с помощью дифракции рентгеновских лучей и электронов (П.Дебаю); в 1946 г. Нобелевская премия по физиологии и медицине Герману Меллеру за обнаружение и изучение мутаций под действием рентгеновских лучей; в 1964 г. Дороти Кроуфут-Ходжкин (англ) – НП по химии: методом рентгено- структурного анализа она определила строение белков и ряда биологически активных соединений и 1988 гг – НП за открытие структуры молекул гемоглобина, дезоксирибонуклеиновой кислоты (ДНК) и белков, соединений, ответственных за фотосинтез, лекарственных препаратов с помощью рентгеновских лучей; в 1979 г. Нобелевская премия за разработку метода осевой рентгеновской томографии (А.Кормаку и Г.Хаунсфилду); в 1981 г. Кай Сигбан (сын Карла Сигбана) - премия по физике за разработку рентгеновской электронной спектрометрии - метода широко применяемого в химических исследованиях.

Механизмы взаимодействия электромагнитного излучения (фотонов – квантовых частиц, не имеющих заряда) с веществом: 1. 1.Фотоэффект 2. 2.Комптоновский эффект (рассеяние) 3. 3.Образование пар 4. 4.Рэлеевское (когерентное) рассеяние; 5.Фотоядерные реакции См. Кудряшов, 2003; Сивухин, 2006 (Атомная и ядерная физика)

Механизмы поглощения энергии фотонов Фотоэффект (только для длинноволнового рентгеновского излучения) Энергия падающего кванта полностью поглощается веществом, в результате появляются свободные электроны с кинетической энергией, равной энергии захваченного кванта за вычетом энергии выхода электрона

- Эффект Комптона - упругое рассеяние падающих фотонов на электроне внешней орбиты Электрону внешней орбиты передается часть энергии фотона. Оставшуюся энергию уносят рассеявшиеся фотоны. Средняя энергия фотонов возрастает с увеличением энергии падающего излучения

Образование электрон-позитронных пар В результате взаимодействия кванта излучения с кулоновским полем ядра атома, квант исчезает и одновременно возникает пара частиц электрон-позитрон. Позитрон аннигилирует с электронами среды, с образованием вторичных гамма-квантов Вторичные гамма-кванты проходя через вещество теряют энергию за счет фотоэффекта или эффекта Комптона для фотонов с энергией > 1,022 МэВ, т.е. превышающей внутриатомные энергии связи

кэВ – фотоэффект; 0,3-10 МэВ – эффект Комптона; >10 МэВ – образование пар Поглощение фотонов в биологических тканях При действии рентгеновского и гамма-излучения первичная ионизация (возникновение атомов, утративших электрон вследствие фото- и Комптон- эффекта) мала по сравнению с ионизацией в результате действия вторичных электронов. Поэтому электромагнитное излучение считают косвенно ионизирующим. Относительная вероятность реализации вышеперечисленных механизмов при облучении биологических тканей представлена на рисунке В большинстве случаев при облучении биологических объектов энергия электромагнитного излучения находится в диапазоне МэВ, поэтому наибольшую роль играет эффект Комптона

2. Корпускулярное излучение Нейтроны (открыты в 1932 г): частицы с массой 1,0087 атомной единицы и нулевым зарядом Получают нейтроны в ядерных реакциях или при делении ядер урана и трансурановых элементов Свободный нейтрон нестабилен и распадается на протон, электрон и антинейтрино, Т 1/2 =918 с. Время жизни нейтрона в биологических тканях = 0,0002 с (в 4,5 млн раз меньше Т 1/2 ) в зависимости от энергии частиц делится на группы: сверхбыстрые (энергия > 20 МэВ) быстрые (энергия 0,1-20 МэВ), промежуточные (0,5-100 кэВ), медленные (< 0,5 эВ) тепловые (0,025 эВ при температуре +20 о С, скорость 2200 м/с)

Взаимодействие нейтронов с веществом: 1) Упругое рассеяние (для быстрых нейтронов) – в результате соударения нейтрона с ядром атома кинетическая энергия нейтрона распределяется между ним и «ядром отдачи». Чем меньше масса ядра, тем больше энергии оно получит (водород). Р+Р+ e-e- n Р+ n Быстрый нейтрон Протон отдачи Нейтрон с меньшей энергией В биологических тканях, богатых водородом, появляются «протоны отдачи», обладающие значительной кинетической энергией и зарядом, могут взаимодействовать с электронными оболочками атомов и вызывать ионизацию

2) Неупругое рассеяние (при энергии больше нескольких кэВ) Вся энергия нейтрона передается ядру Часть энергии нейтронов идет на возбуждение ядра, часть – на кинетическую энергию ядра. При переходе в основное состояние возбужденное ядро испускает гамма-кванты.

3) Радиационный (нейтронный) захват (для медленных нейтронов,

Особенности взаимодействия нейтронов с биологическими тканями не взаимодействуют с кулоновским полем атомов и молекул – проходят в веществе значительные расстояния, не меняя направления траектории Ионизация поглотителя происходи косвенным путем за счет высвобожденных вторичных тяжелых заряженных частиц – ядер отдачи и продуктов ядерных реакций на элементах ткани или специально вводимых изотопах (например 10 В – в случае НЗТ) Наибольшее применение в радиобиологии имеют быстрые нейтроны, как наиболее глубоко проникающие в ткани (см. рис) Зависимость средней длины пробега нейтронов в биологической ткани от их энергии

Пример использования нейтронов для терапии злокачественных новообразований Нейтронно-захватная терапия (НЗТ) - - Новая технология (реализуется на реакторе ИРТ МИФИ) - Метод избирательного воздействия излучения на опухоль НЗТ использует тропные к опухоли препараты, содержащие нуклиды ( 10 В или 157 Gd), которые поглощая нейтроны, образуют вторичное излучение, губительное для опухолевых клеток Ядерные реакции в опухоли при процедуре НЗТ

Схема разрушения опухолевых клеток при НЗТ

Карта МИФИ

Атомный центр Московского инженерно- физического института (АЦ МИФИ) Под руководством В.Ф.Хохлова (ГНЦ ИБФ), А.А.Портнова, К.Н.Зайцева активно проводятся исследования по высокоэффективному методу нейтрон-захватной терапии злокачественных опухолей на основе соединений, содержащих 10В и 157Cd. Под руководством В.Ф.Хохлова (ГНЦ ИБФ), А.А.Портнова, К.Н.Зайцева активно проводятся исследования по высокоэффективному методу нейтрон-захватной терапии злокачественных опухолей на основе соединений, содержащих 10В и 157Cd. В опытах на крупных лабораторных животных со спонтанной меланомой в 80% случаев достигнута полная резорбция опухолей. В опытах на крупных лабораторных животных со спонтанной меланомой в 80% случаев достигнута полная резорбция опухолей.

Примеры лечения методом НЗТ in vivo Меланома слюнной железы собаки до и после лечение методом НЗТ Меланома слюнной железы собаки до и после лечение методом НЗТ

Примеры лечения методом НЗТ in vitro Схема экстракорпорального лечения рака кости методом НЗТ Схема экстракорпорального лечения рака кости методом НЗТ

-мезоны -мезоны Заряженные частицы с энергией МэВ. Заряженные частицы с энергией МэВ. Нестабильны (Т 1/2 =2,54*10 -8 с) Нестабильны (Т 1/2 =2,54*10 -8 с) МП протонов (в 6 раз) >Масса покоя (МП) - > МП е- в 273 раз, поэтому - рассеиваются меньше, чем электроны, но больше, чем протоны МП протонов (в 6 раз) >Масса покоя (МП) - > МП е- в 273 раз, поэтому - рассеиваются меньше, чем электроны, но больше, чем протоны Проходят путь в тканях до полного торможения почти без ядерных взаимодействий, в конце пробега захватываются ядрами атомов ткани, что сопровождается «микровзрывом» - вылетом набора частиц (нейтронов, протонов, альфа-) Проходят путь в тканях до полного торможения почти без ядерных взаимодействий, в конце пробега захватываются ядрами атомов ткани, что сопровождается «микровзрывом» - вылетом набора частиц (нейтронов, протонов, альфа-) Благодаря особенности взаимодействия с тканями широко используются в лучевой терапии Благодаря особенности взаимодействия с тканями широко используются в лучевой терапии

α-частицы (ядра атомов гелия, 4 He – 2 протона+2 нейтрона ) α-частицы (ядра атомов гелия, 4 He – 2 протона+2 нейтрона ) Альфа-распад характерен для тяжелых элементов (урана, тория, плутония, полония и др. – всего 40 естественных и около 200 искусственных). Периоды α-распада - от с до лет, при этом кинетическая энергия α-частиц=2-9МэВ. При альфа-распаде атомный номер уменьшается на 2, а массовое число на 4 Pu U He 4 2 Рис. α-распад: а – распад 241 Am; б – энергетическая схема распада 226 Ra с переходом в основное и возбужденное состояния 222 Rn

Взаимодействие альфа-частиц с веществом Пробег альфа-частиц в воздухе не превышает 11 см, в мягких тканях человека – микроны. (Макс.энергия – 8,8 МэВ – распад 210 Ро) (Возможно ускорение до энергии в сотни МэВ, что приведет к увеличению длины пробега – использование в лучевой терапии) Альфа-частицы относятся к числу плотно- ионизирующих частиц

90 Sr Y частицы образуются: -частицы образуются: При электронном -распаде происходит превращение нейтрона в протон, заряд ядра и его порядковый номер увеличиваются на единицу. Массовое число ядра не изменяется При позитронном -распаде происходит превращение протона в нейтрон, которое сопровождается выбросом позитрона. Заряд ядра и его порядковый номер уменьшаются на единицу. Массовое число ядра не изменяется 22 Na Ne

Примеры β-распада а) - распад трития; а) β - - распад трития; б) - распад углерода 11 С; б) β + - распад углерода 11 С; в) электронный захват 7 Ве Простой β - - распад изотопа 32 Р

Бета частицы имеют разную энергию, поэтому их пробег в веществе неодинаков. При взаимодействии с атомами среды бета- частицы отклоняются от своего первоначального направления, сильнее, чем альфа-частицы. Их путь в веществе представляет из себя ломаную линию. Ионизирующая способность бета-частиц меньше, чем альфа-частиц. При прохождении вблизи положительно заряженных ядер, бета-частицы тормозятся и теряют энергию в виде тормозного рентгеновского излучения. Взаимодействие с веществом

Взаимодействие заряженных частиц с веществом: Заряженная частица испытывает электростатическое взаимодействие, (притягивается или отталкивается) с электронами или ядром атомов, мимо которых пролетает, и теряет при этом энергию. Частица с энергией 1 МэВ испытывает около 10 5 взаимодействий, пока не потеряет всю энергию. Чем больше масса частицы, тем меньше она отклоняется от первоначального направления.

Относительная биологическая эффективность, ЛПЭ и поражение клеток С ростом ЛПЭ повышается поражаемость клеток и снижается их способность к восстановлению (рис.2) С ростом ЛПЭ повышается поражаемость клеток и снижается их способность к восстановлению (рис.2) Дейтрон = дейтерий = 2 Н (1 протон+1 нейтрон) Дейтрон = дейтерий = 2 Н (1 протон+1 нейтрон) ЛПЭ=19,4, 570 ионов/мкм ЛПЭ=19,4 ЛПЭ=54,0 ЛПЭ=130, 3800 ионов/мкм ЛПЭ=0,2, 6 ионов/мкм Рис.1. Схематическое распределение актов ионизации вдоль треков заряженных частиц различной природы и энергии. С ростом ЛПЭ вероятность поражения увеличивается Рис. 2. Кривые выживания клеток почки человека, подвергнутых облучению. 1 – рентгеновское излучение, 2 – нейтроны, 3 - -излучение. Относительная биологическая эффективность увеличивается с ростом ЛПЭ (рис. 1)

Задание для самостоятельной работы: подготовить к следующей лекции в виде презентации Кратко охарактеризовать физико- химические свойства и особенности воздействия на биоту следующих техногенных радионуклидов: Cs-137; Sr- 90; Pu-239, 240, 241 (изотопы плутония в целом); I-131; P-32; Co-60; Zn-65.