Строение Вселенной Строение Вселенной Млечный путь 120000 св.лет Млечный путь Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд.

Презентация:



Advertisements
Похожие презентации
Млечный Путь (или Галактика, с заглавной буквы) галактика, в которой находятся Земля, Солнечная система и все отдельные звёзды, видимые невооружённым.
Advertisements

Презентацию выполнил ученик 11 класса Вдовьев Кирилл.
Млечный путь
Млечный Путь ( также наша Галактика ) галактика, в которой находятся Земля, Солнечная система и все отдельные звёзды, видимые невооружённым глазом. Относится.
, Проект: Гайдаренко Евгения (11 класс). Световой год внесистемная единица длины, равная расстоянию, которое преодолевает свет за год. Световой год внесистемная.
{ Галактики. Оглавление: 1.Наша галактика 2.Строение 3.Рассеянное звёздное скопление 4.Шаровые звёздные скопления 5.Межзвёздное вещество 6.Виды Галактик.
Астрономия: Млечный путь. Наша Галактика Студент Бакинского Компьютерного Колледжа Асланов Мурад.
Выполнил: Ружицкий И.Д. Гр.001 Выполнил: Ружицкий И.Д. Гр.001.
Млечный путь. Галактика Мле́чный Путь называется также просто Гала́ктика Гигантская звёздная система, в которой находится Солнечная система, все видимые.
Млечный Путь. Млечный Путь галактика, в которой находятся Земля, Солнечная система и все отдельные звёзды, видимые невооружённым глазом. Относится к спиральным.
Классификация галактик и их свойства. История … Первую классификацию галактик разработал Эдвин Пауэл Хаббл, американский астроном в далёком 1925 г. Классификация.
Камертон Хаббла Последовательность Хаббла это морфологическая классификация предложенная Эдвином Хабблом в 1926 году, и модифицированная им же в 1936.
Черные дыры. Чёрная дыра область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся.
Квазары Черные дыры Выполнили: Учащиеся 11-Б класса Дорошенко Валентина, Зубкова Александра.
Достижения астрономии и физики XX-XXI века. Происхождение звёзд и планет Первый этап - обособление фрагмента облака и его уплотнение.
Презентация на тему: «Галактика – Млечный путь» Подготовили проект: А.Ю.Бычкова, Э.Р.Мусина. Проверила: Л.О.Пронина. МБОУ СОШ 107.
Происхождение ГАЛАКТИК. Галактикой называется большая система из звезд, межзвездного газа, пыли, темной материи и, возможно, темной энергии, связанная.
Границы нашей Галактики определяются размерами гало. Радиус гало значительно больше размеров диска и по некоторым данным достигает нескольких сот тысяч.
Обычно галактики содержат от 10 миллионов до нескольких триллионов звёзд, вращающихся вокруг общего центра тяжести. Кроме отдельных звёзд, и разрежённой.
Работу выполнила студентка 2 курса педагогического факультета группы ИЗ-21 Молокова Екатерина.
Транксрипт:

Строение Вселенной Строение Вселенной Млечный путь св.лет Млечный путь Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд Основная масса звёзд расположена в форме плоского диска. По состоянию на январь 2009, масса Галактики оценивается в 3·10^12 масс Солнца, или 6·10^42 кг.

Ядро В средней части Галактики находится утолщение, которое называется балджем (англ. bulge утолщение), составляющее около 8 тысяч парсек в поперечнике. В центре Галактики, по всей видимости, располагается сверхмассивная чёрная дыра (Стрелец A*) вокруг которой, предположительно, вращается чёрная дыра средней массы. Их совместное гравитационное действие на соседние звёзды заставляет последние двигаться по необычным траекториям.балджемангл.сверхмассивная чёрная дыраСтрелец A* Центр ядра Галактики находится в созвездии Стрельца (α = 265°, δ = 29°). Расстояние от Солнца до центра Галактики 8,5 килопарсек (2,62·10^17 км, или световых лет).созвездии Стрельца

Рукава Галактика относится к классу спиральных галактик, что означает, что у Галактики есть спиральные рукава, расположенные в плоскости диска. Диск погружён в гало сферической формы, а вокруг него располагается сферическая корона. Солнечная система находится на расстоянии 8,5 тысяч парсек от галактического центра, вблизи плоскости Галактики (смещение к Северному полюсу Галактики составляет всего 10 парсек), на внутреннем крае рукава, носящего название рукав Ориона. Такое расположение не даёт возможности наблюдать форму рукавов визуально. Новые данные по наблюдениям молекулярного газа (СО) говорят о том, что у нашей Галактики есть два рукава, начинающиеся у бара во внутренней части Галактики. Кроме того, во внутренней части есть ещё пара рукавов. Затем эти рукава переходят в четырёхрукавную структуру, наблюдающуюся в линии нейтрального водорода во внешних частях Галактики. Галактика относится к классу спиральных галактик, что означает, что у Галактики есть спиральные рукава, расположенные в плоскости диска. Диск погружён в гало сферической формы, а вокруг него располагается сферическая корона. Солнечная система находится на расстоянии 8,5 тысяч парсек от галактического центра, вблизи плоскости Галактики (смещение к Северному полюсу Галактики составляет всего 10 парсек), на внутреннем крае рукава, носящего название рукав Ориона. Такое расположение не даёт возможности наблюдать форму рукавов визуально. Новые данные по наблюдениям молекулярного газа (СО) говорят о том, что у нашей Галактики есть два рукава, начинающиеся у бара во внутренней части Галактики. Кроме того, во внутренней части есть ещё пара рукавов. Затем эти рукава переходят в четырёхрукавную структуру, наблюдающуюся в линии нейтрального водорода во внешних частях Галактики.галокоронаСолнечная системарукав ОрионагалокоронаСолнечная системарукав Ориона

Гало Гало галактики невидимый компонент галактики сферической формы, который простирается за видимую часть галактики. В основном состоит из разрежённого горячего газа, звёзд и тёмной материи. Последняя составляет основную массу галактики.галактикисферическойтёмной материи Галактическое галоГалактическое гало имеет сферическую форму, выходящую за пределы галактики на 510 тысяч световых лет, и температуру около 5·10^5 K.

История открытия Галактики Большинство небесных тел объединяются в различные вращающиеся системы. Так, Луна обращается вокруг Земли, спутники планет-гигантов образуют свои, богатые телами, системы. На более высоком уровне, Земля и остальные планеты обращаются вокруг Солнца. Возникал естественный вопрос: не входит ли и Солнце в систему ещё большего размера? Большинство небесных тел объединяются в различные вращающиеся системы. Так, Луна обращается вокруг Земли, спутники планет-гигантов образуют свои, богатые телами, системы. На более высоком уровне, Земля и остальные планеты обращаются вокруг Солнца. Возникал естественный вопрос: не входит ли и Солнце в систему ещё большего размера? ЛунаЗемлиспутникипланет-гигантовпланеты ЛунаЗемлиспутникипланет-гигантовпланеты Первое систематическое исследование этого вопроса выполнил в XVIII веке английский астроном Уильям Гершель. Он подсчитывал количество звёзд в разных областях неба и обнаружил, что на небе присутствует большой круг (впоследствии он был назван галактическим экватором), который делит небо на две равные части и на котором количество звёзд оказывается наибольшим. Кроме того, звёзд оказывается тем больше, чем ближе участок неба расположен к этому кругу. Наконец обнаружилось, что именно на этом круге располагается Млечный Путь. Благодаря этому Гершель догадался, что все наблюдаемые нами звёзды образуют гигантскую звёздную систему, которая сплюснута к галактическому экватору. Первое систематическое исследование этого вопроса выполнил в XVIII веке английский астроном Уильям Гершель. Он подсчитывал количество звёзд в разных областях неба и обнаружил, что на небе присутствует большой круг (впоследствии он был назван галактическим экватором), который делит небо на две равные части и на котором количество звёзд оказывается наибольшим. Кроме того, звёзд оказывается тем больше, чем ближе участок неба расположен к этому кругу. Наконец обнаружилось, что именно на этом круге располагается Млечный Путь. Благодаря этому Гершель догадался, что все наблюдаемые нами звёзды образуют гигантскую звёздную систему, которая сплюснута к галактическому экватору.XVIII векеУильям Гершельгалактическим экваторомМлечный ПутьXVIII векеУильям Гершельгалактическим экваторомМлечный Путь Вначале предполагалось, что все объекты Вселенной являются частями нашей Галактики, хотя ещё Кант высказывал предположение, что некоторые туманности могут быть галактиками, подобными Млечному Пути. Ещё в 1920 году вопрос о существовании внегалактических объектов вызывал дебаты (например, известный Большой спор между Харлоу Шепли и Гебером Кёртисом; первый отстаивал единственность нашей Галактики). Гипотеза Канта была окончательно доказана лишь в 1920-х годах, когда Эдвину Хабблу удалось измерить расстояние до некоторых спиральных туманностей и показать, что по своему удалению они не могут входить в состав Галактики. Вначале предполагалось, что все объекты Вселенной являются частями нашей Галактики, хотя ещё Кант высказывал предположение, что некоторые туманности могут быть галактиками, подобными Млечному Пути. Ещё в 1920 году вопрос о существовании внегалактических объектов вызывал дебаты (например, известный Большой спор между Харлоу Шепли и Гебером Кёртисом; первый отстаивал единственность нашей Галактики). Гипотеза Канта была окончательно доказана лишь в 1920-х годах, когда Эдвину Хабблу удалось измерить расстояние до некоторых спиральных туманностей и показать, что по своему удалению они не могут входить в состав Галактики.Кант1920 году Большой спорХарлоу ШеплиГебером КёртисомЭдвину ХабблуКант1920 году Большой спорХарлоу ШеплиГебером КёртисомЭдвину Хабблу

КЛАССИФИКАЦИЯ ГАЛАКТИК

Ранние попытки классификации Попытки классифицировать галактики начались одновременно с обнаружением первых туманностей со спиральным узором Лордом Россом в гг. Впрочем, в то время господствовала теория, согласно которой все туманности принадлежат нашей Галактике. То, что ряд туманностей имеет негалактическую природу, было доказано лишь Э.Хабблом в 1924 году. Таким образом, галактики классифицировали также, как и галактические туманности.галактикитуманностей со спиральным узоромЛордом Россомнашей ГалактикеЭ.Хабблом1924 году В ранних фотографических обзорах доминировали спиральные туманности, что позволило выделить их в отдельный класс. В 1888 году А. Робертс выполнил глубокий обзор неба, в результате которого было обнаружено большое число эллиптических бесструктурных и очень вытянутых веретенообразных туманностей. В 1918 году Г. Д. Кёртис выделил в отдельную группу спирали с перемычкой и кольцеобразной структурой в отдельную Φ-группу. Кроме того, он интерпретировал веретенообразные туманности, как спирали, видимые с ребра.1888 году А. Робертсэллиптических бесструктурныхверетенообразных1918 годуГ. Д. Кёртисперемычкой

Гарвардская классификация Все галактики в гарвардской классификации были резделены на 5 классов: Все галактики в гарвардской классификации были резделены на 5 классов: Класс A галактики ярче 12m Класс A галактики ярче 12mm Класс B галактики от 12m до 14m Класс B галактики от 12m до 14mm Класс С галактики от 14m до 16m Класс С галактики от 14m до 16mm Класс D галактики от 16m до 18m Класс D галактики от 16m до 18mm Класс E галактики от 18m до 20m Класс E галактики от 18m до 20mm

Последовательность Хаббла Эллиптические галактики Эллиптические галактики Спиральные галактики Спиральные галактики Неправильные или иррегулярные галактики Неправильные или иррегулярные галактики Линзовидных галактики Линзовидных галактики

Эллиптические галактики Эллиптические галактики имеют гладкую эллиптическую форму (от сильно сплющенных, до почти круглых) без отличительных деталей с равномерным уменьшением яркости от центра к периферии. Они обозначаются буквой E и цифрой, которая является индексом сплющенности галактики. Так, круглая галактика будет иметь обозначение E0, а галактика, у которой одна из больших полуосей в двое больше другой, E5. Эллиптические галактики имеют гладкую эллиптическую форму (от сильно сплющенных, до почти круглых) без отличительных деталей с равномерным уменьшением яркости от центра к периферии. Они обозначаются буквой E и цифрой, которая является индексом сплющенности галактики. Так, круглая галактика будет иметь обозначение E0, а галактика, у которой одна из больших полуосей в двое больше другой, E5. Эллиптические галактики Эллиптические галактики M87

Спиральные галактики Спиральные галактики состоят из уплощенного диска из звезд и газа, в центре которого находится сферическое уплотнение, называемое балджем, а также обширного сферического гало. В плоскости диска формируются яркие спиральные рукава, состоящие преимущественно из молодых звезд, газа и пыли. Хаббл разделил все известные спиральные галактики на нормальные спирали (обозначаются символом S) и спирали с баром (SB), которые в отечественной литературе часто называют галактиками с перемычкой или пересеченными. В нормальных спиралях спиральные ветви тангенциально отходят от центрального яркого ядра и простираются на протяжении одного оборота. Число ветвей может быть различно: 1, 2, 3,… но чаще всего встречаются галактики только с двумя ветвями. В пересеченных галактиках спиральные ветви отходят под прямым углом от концов бара. Среди них тоже встречаются галактики с числом ветвей, не равным двум, но, в основной массе, пересеченные галактики обладают двумя спиральными ветвями. В зависимости от того, являются ли спиральные рукава плотно закрученными или клочковатыми, или же по соотношению размеров ядра и балджа, добавляют символы a, b или c. Так для галактик Sa характерен большой балдж и туго закрученная регулярная структура, а для галактик Sc небольшой балдж и клочковатая спиральная структура. К подклассу Sb относят галактики, которые по какой-либо причине нельзя отнести к одному из крайних подклассов: Sa или Sc. Так, галактика M81 обладает большим балджем и клочковатой спиральной структурой. Спиральные галактики состоят из уплощенного диска из звезд и газа, в центре которого находится сферическое уплотнение, называемое балджем, а также обширного сферического гало. В плоскости диска формируются яркие спиральные рукава, состоящие преимущественно из молодых звезд, газа и пыли. Хаббл разделил все известные спиральные галактики на нормальные спирали (обозначаются символом S) и спирали с баром (SB), которые в отечественной литературе часто называют галактиками с перемычкой или пересеченными. В нормальных спиралях спиральные ветви тангенциально отходят от центрального яркого ядра и простираются на протяжении одного оборота. Число ветвей может быть различно: 1, 2, 3,… но чаще всего встречаются галактики только с двумя ветвями. В пересеченных галактиках спиральные ветви отходят под прямым углом от концов бара. Среди них тоже встречаются галактики с числом ветвей, не равным двум, но, в основной массе, пересеченные галактики обладают двумя спиральными ветвями. В зависимости от того, являются ли спиральные рукава плотно закрученными или клочковатыми, или же по соотношению размеров ядра и балджа, добавляют символы a, b или c. Так для галактик Sa характерен большой балдж и туго закрученная регулярная структура, а для галактик Sc небольшой балдж и клочковатая спиральная структура. К подклассу Sb относят галактики, которые по какой-либо причине нельзя отнести к одному из крайних подклассов: Sa или Sc. Так, галактика M81 обладает большим балджем и клочковатой спиральной структурой. Спиральные галактикибалджемгало баром Спиральные галактикибалджемгало баром

NGC 1300

Неправильные или иррегулярные галактики Неправильные или иррегулярные галактики галактика, лишенная как вращательной симметрии, так и значительного ядра. Характерным представителем неправильных галактик являются Магеллановы облака. Бытовал даже термин «магеллановы туманности». Неправильные галактики отличаются разнообразием форм, обычно небольшими размерами и обилием газа, пыли и молодых звёзд. Обозначаются I. В силу того, что форма неправильных галактик твёрдо не определена, как неправильные галактики часто классифицировали пекулярные галактики. Неправильные или иррегулярные галактики галактика, лишенная как вращательной симметрии, так и значительного ядра. Характерным представителем неправильных галактик являются Магеллановы облака. Бытовал даже термин «магеллановы туманности». Неправильные галактики отличаются разнообразием форм, обычно небольшими размерами и обилием газа, пыли и молодых звёзд. Обозначаются I. В силу того, что форма неправильных галактик твёрдо не определена, как неправильные галактики часто классифицировали пекулярные галактики. Неправильные или иррегулярные галактикиМагеллановы облака пекулярные галактики Неправильные или иррегулярные галактикиМагеллановы облака пекулярные галактики M82

Линзовидных галактики Линзообразные галактики это дисковые галактики (как и, например, спиральные), которые потратили или потеряли свою межзвёздную материю (как эллиптические). В тех случаях, когда галактика обращена плашмя в сторону наблюдателя, часто бывает трудно чётко различить линзообразные и эллиптические галактики из-за невыразительности спиральных рукавов линзообразной галактики. Линзообразные галактики это дисковые галактики (как и, например, спиральные), которые потратили или потеряли свою межзвёздную материю (как эллиптические). В тех случаях, когда галактика обращена плашмя в сторону наблюдателя, часто бывает трудно чётко различить линзообразные и эллиптические галактики из-за невыразительности спиральных рукавов линзообразной галактики. дисковые галактикимежзвёздную материю дисковые галактикимежзвёздную материю NGC 5866

Чёрная дыра

Чёрная дыра область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света). Чёрная дыра область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света (в том числе и кванты самого света).пространстве-временигравитационное притяжениескоростью светакванты светапространстве-временигравитационное притяжениескоростью светакванты света Граница этой области называется горизонтом событий, а её характерный размер гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда. Вопрос о реальном существовании чёрных дыр тесно связан с тем, насколько верна теория гравитации, из которой следует их существование. В современной физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), уверенно предсказывающая возможность образования чёрных дыр (но их существование возможно и в рамках других (не всех) моделей, см.: Альтернативные теории гравитации). Поэтому наблюдательные данные анализируются и интерпретируются, прежде всего, в контексте ОТО, хотя, строго говоря, эта теория не является экспериментально подтверждённой для условий, соответствующих области пространства-времени в непосредственной близости от чёрных дыр звёздных масс (однако хорошо подтверждена в условиях, соответствующих сверхмассивным чёрным дырам). Поэтому утверждения о непосредственных доказательствах существования чёрных дыр, в том числе и в этой статье ниже, строго говоря, следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности. Граница этой области называется горизонтом событий, а её характерный размер гравитационным радиусом. В простейшем случае сферически симметричной чёрной дыры он равен радиусу Шварцшильда. Вопрос о реальном существовании чёрных дыр тесно связан с тем, насколько верна теория гравитации, из которой следует их существование. В современной физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), уверенно предсказывающая возможность образования чёрных дыр (но их существование возможно и в рамках других (не всех) моделей, см.: Альтернативные теории гравитации). Поэтому наблюдательные данные анализируются и интерпретируются, прежде всего, в контексте ОТО, хотя, строго говоря, эта теория не является экспериментально подтверждённой для условий, соответствующих области пространства-времени в непосредственной близости от чёрных дыр звёздных масс (однако хорошо подтверждена в условиях, соответствующих сверхмассивным чёрным дырам). Поэтому утверждения о непосредственных доказательствах существования чёрных дыр, в том числе и в этой статье ниже, строго говоря, следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности.горизонтом событийгравитационным радиусомрадиусу Шварцшильда теория гравитацииобщая теория относительности Альтернативные теории гравитациигоризонтом событийгравитационным радиусомрадиусу Шварцшильда теория гравитацииобщая теория относительности Альтернативные теории гравитации

Магнетар

Магнетар или магнитар нейтронная звезда, обладающая исключительно сильным магнитным полем (до 1011 Тл). Теоретически существование магнетаров было предсказано в 1992 году, а первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма- и рентгеновского излучения от источника SGR в созвездии Орла. Время жизни магнетаров мало, оно составляет около лет. Магнетары являются малоизученным типом нейтронных звезд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре насчитывают около 20 км, однако массы большинства превышают массу Солнца. Магнетар настолько сжат, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, как минимум несколько оборотов вокруг оси в секунду. Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей галактике за всё время её существования могло сформироваться до 30 миллионов магнетаров. Магнетары образуются из массивных звезд с начальной массой около 40 М. Магнетар или магнитар нейтронная звезда, обладающая исключительно сильным магнитным полем (до 1011 Тл). Теоретически существование магнетаров было предсказано в 1992 году, а первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма- и рентгеновского излучения от источника SGR в созвездии Орла. Время жизни магнетаров мало, оно составляет около лет. Магнетары являются малоизученным типом нейтронных звезд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре насчитывают около 20 км, однако массы большинства превышают массу Солнца. Магнетар настолько сжат, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, как минимум несколько оборотов вокруг оси в секунду. Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей галактике за всё время её существования могло сформироваться до 30 миллионов магнетаров. Магнетары образуются из массивных звезд с начальной массой около 40 М.нейтронная звезда магнитным полемТл1992 году1998 годугамма-рентгеновского излученияSGR Орла нейтронныхзвезд ЗемлеСолнцанашей галактикенейтронная звезда магнитным полемТл1992 году1998 годугамма-рентгеновского излученияSGR Орла нейтронныхзвезд ЗемлеСолнцанашей галактике Толчки, образованные на поверхности магнетара вызывают огромные колебания в звезде, а также магнитные колебания поля, которые сопровождают их, часто приводят к огромным выбросам гамма излучения, которые были зафиксированы на Земле в 1979, 1998 и 2004 годах. Магнитное поле нейтронной звезды в миллион миллионов раз больше, чем магнитное поле Земли Толчки, образованные на поверхности магнетара вызывают огромные колебания в звезде, а также магнитные колебания поля, которые сопровождают их, часто приводят к огромным выбросам гамма излучения, которые были зафиксированы на Земле в 1979, 1998 и 2004 годах. Магнитное поле нейтронной звезды в миллион миллионов раз больше, чем магнитное поле Земли годах годах

Пульсары J

Пульсар космический источник радио- (радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма- (гамма-пульсар) излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения. Первый пульсар был открыт в июне 1967 г. Джоселин Белл, аспиранткой Э. Хьюиша, на меридианном радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета на длине волны 3,5 м (85,7 МГц). За этот выдающийся результат Хьюиш получил в 1974 году Нобелевскую премию. Современные названия этого пульсара PSR B или PSR J Пульсар космический источник радио- (радиопульсар), оптического (оптический пульсар), рентгеновского (рентгеновский пульсар) и/или гамма- (гамма-пульсар) излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения. Первый пульсар был открыт в июне 1967 г. Джоселин Белл, аспиранткой Э. Хьюиша, на меридианном радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета на длине волны 3,5 м (85,7 МГц). За этот выдающийся результат Хьюиш получил в 1974 году Нобелевскую премию. Современные названия этого пульсара PSR B или PSR J космическийрадио-радиопульсароптическогооптический пульсар рентгеновскогорентгеновский пульсаргамма-гамма-пульсар Землюпериодическихимпульсовастрофизическойнейтронные звёздымагнитным полемоси вращениямодуляцию1967 г.Джоселин БелласпиранткойЭ. Хьюиша радиотелескопеМаллардской радиоастрономической обсерваторииКембриджского университета длине волны1974 году Нобелевскую премиюPSR B космическийрадио-радиопульсароптическогооптический пульсар рентгеновскогорентгеновский пульсаргамма-гамма-пульсар Землюпериодическихимпульсовастрофизическойнейтронные звёздымагнитным полемоси вращениямодуляцию1967 г.Джоселин БелласпиранткойЭ. Хьюиша радиотелескопеМаллардской радиоастрономической обсерваторииКембриджского университета длине волны1974 году Нобелевскую премиюPSR B Результаты наблюдений несколько месяцев хранились в тайне, а первому открытому пульсару присвоили имя LGM-1 (сокр. от Little Green Men маленькие зелёные человечки). Такое название было связано с предположением, что эти строго периодические импульсы радиоизлучения имеют искусственное происхождение. Однако доплеровское смещение частоты (характерное для источника, совершающего орбитальное движение вокруг звезды) обнаружено не было. Кроме того, группа Хьюиша нашла ещё 3 источника аналогичных сигналов. После этого гипотеза о сигналах внеземной цивилизации отпала, и в феврале 1968 года в журнале «Nature» появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой. Результаты наблюдений несколько месяцев хранились в тайне, а первому открытому пульсару присвоили имя LGM-1 (сокр. от Little Green Men маленькие зелёные человечки). Такое название было связано с предположением, что эти строго периодические импульсы радиоизлучения имеют искусственное происхождение. Однако доплеровское смещение частоты (характерное для источника, совершающего орбитальное движение вокруг звезды) обнаружено не было. Кроме того, группа Хьюиша нашла ещё 3 источника аналогичных сигналов. После этого гипотеза о сигналах внеземной цивилизации отпала, и в феврале 1968 года в журнале «Nature» появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой.маленькие зелёные человечкидоплеровское смещение1968 годаNatureмаленькие зелёные человечкидоплеровское смещение1968 годаNature Сообщение вызвало научную сенсацию. До конца 1968 г. различные обсерватории мира обнаружили ещё 58 объектов, получивших название пульсаров, число посвящённых им публикаций в первые же годы после открытия составило несколько сотен. Вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени так образуются импульсы пульсара. Сообщение вызвало научную сенсацию. До конца 1968 г. различные обсерватории мира обнаружили ещё 58 объектов, получивших название пульсаров, число посвящённых им публикаций в первые же годы после открытия составило несколько сотен. Вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени так образуются импульсы пульсара.радиопульсарнейтронную звездуполе зрениянаблюдателярадиопульсарнейтронную звездуполе зрениянаблюдателя На 2008 год уже известно около 1790 радиопульсаров (по данным каталога ATNF). Ближайшие из них расположены на расстоянии около 0,12 кпк (около 390 световых лет) от Солнца. На 2008 год уже известно около 1790 радиопульсаров (по данным каталога ATNF). Ближайшие из них расположены на расстоянии около 0,12 кпк (около 390 световых лет) от Солнца.ATNFкпксветовых летСолнцаATNFкпксветовых летСолнца Несколько позже были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами. Как и радио-, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами. В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша и под действием пульсара постепенно превращающегося в белого карлика. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и частота вращения, в то время как радиопульсары со временем, наоборот, замедляются. Обычный пульсар совершает оборот за время от нескольких секунд до нескольких десятых долей секунды, а рентгеновский пульсар делает сотни оборотов в секунду. Несколько позже были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами. Как и радио-, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами. В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша и под действием пульсара постепенно превращающегося в белого карлика. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и частота вращения, в то время как радиопульсары со временем, наоборот, замедляются. Обычный пульсар совершает оборот за время от нескольких секунд до нескольких десятых долей секунды, а рентгеновский пульсар делает сотни оборотов в секунду. рентгеновскими пульсарамиаккрецииполость Рошамомент инерции частота вращения рентгеновскими пульсарамиаккрецииполость Рошамомент инерции частота вращения