А. Yu. Muizemnek, I. V. Denisov, О. L. Pervukhina, А. Е. Rosen, I. S. Los and Yu. A. Gordopolov DEFORMATION OF LONG- LENGTH EXPLOCLAD SHEETS: MATHEMATICAL.

Презентация:



Advertisements
Похожие презентации
WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER. WS9A-2 NAS120, Workshop 9A, May 2006 Copyright 2005 MSC.Software Corporation.
Advertisements

Workshop 9-1 NAS101 Workshops Copyright 2001 MSC.Software Corporation WORKSHOP 9 Buckling Analysis of Plate.
MATHEMATICAL MODEL OF ICE SHEET DEFORMATION CAUSED BY SUBMARINE MOTION V. M. Kozin, V. L. Zemlak, S. D. Chizhiumov Shipbuilding Department, State Technical.
WS8-1 PAT328, Workshop 8, September 2004 Copyright 2004 MSC.Software Corporation WORKSHOP 8 Viewing Results for MSC.Nastran Ply PCOMPG Entries Using MSC.Patran.
WORKSHOP 9B 2½ D CLAMP – ISO MESHER. WS9B-2 NAS120, Workshop 9B, May 2006 Copyright 2005 MSC.Software Corporation.
WS2-1 PAT301, Workshop 2, October 2003 WORKSHOP 2 CANTILEVERED PLATE.
WS3-1 PAT328, Workshop 3, May 2005 Copyright 2005 MSC.Software Corporation WORKSHOP 3 TOPOLOGY OPTIMIZATION.
Influence of neutron irradiation parameters on swelling and mechanical properties of stainless steels - materials of BN-350 fuel assembly ducts O.P.Maksimkin,
WORKSHOP 2 SIMPLY SUPPORTED BEAM. WS2-2 NAS120, Workshop 2, May 2006 Copyright 2005 MSC.Software Corporation.
WS9-1 PAT328, Workshop 9, September 2004 Copyright 2004 MSC.Software Corporation WORKSHOP 9 TOPOLOGY OPTIMIZATION.
WS1a-1 WORKSHOP 1A NORMAL MODES ANALYSIS NAS122, Workshop 1a, August 2005 Copyright 2005 MSC.Software Corporation.
WORKSHOP 13 NORMAL MODES OF A RECTANGULAR PLATE. WS13-2 NAS120, Workshop 13, May 2006 Copyright 2005 MSC.Software Corporation.
WS4-1 PAT328, Workshop 4, May 2005 Copyright 2005 MSC.Software Corporation WORKSHOP 4 SOLID TOPOLOGY OPTIMIZATION.
WS5-1 PAT328, Workshop 5, May 2005 Copyright 2005 MSC.Software Corporation WORKSHOP 5 ARBITRARY BEAM SECTION.
WS9-1 WORKSHOP 9 TRANSIENT THERMAL ANALYSIS OF A COOLING FIN NAS104, Workshop 9, March 2004 Copyright 2004 MSC.Software Corporation.
L.B. Pervukhin, T. A. Shishkin, O. L. Pervukhina SPECIFICITY OF EXPLOSIVE WELDING IN MARGINAL ZONES EPNM-2012, Страсбург Institute of Structural Macrokinetics.
Benford Benford's law, also called the first-digit law, states that in lists of numbers from many (but not all) real-life sources of data, the leading.
WS10-1 WORKSHOP 10 TRANSIENT ANALYSIS WITH RADIATION SOURCE AND CONVECTION NAS104, Workshop 10, March 2004 Copyright 2004 MSC.Software Corporation.
WS1-1 NAS120, Workshop 1, May 2006 Copyright 2005 MSC.Software Corporation WORKSHOP 1 LANDING GEAR STRUT ANALYSIS.
WORKSHOP 10 SUPPORT BRACKET. WS10-2 NAS120, Workshop 10, May 2006 Copyright 2005 MSC.Software Corporation.
Транксрипт:

А. Yu. Muizemnek, I. V. Denisov, О. L. Pervukhina, А. Е. Rosen, I. S. Los and Yu. A. Gordopolov DEFORMATION OF LONG- LENGTH EXPLOCLAD SHEETS: MATHEMATICAL MODELING

Object: Experimentally-theoretical research of longitudinal deformations of making layers of a multilayer material at explosion welding Research Technique 1. Computer simulation of deformation process of large-size sheets at explosion welding by means of LS-DYNA. 2. Experimental research of large-size sheets deformation by means of fixed points method. 3. Analysis of computer simulation and experimental results. 2

Explosion welding scheme 1 – clad plate ; 2 – base plate ; 3 – air technological gap ; 4 - sand background The geometrical sizes Thickness, mm Length, mm Width, mm clad plate base plate gap8 explosive sand background PHYSICOMECHANICAL PROPERTIES OF MATERIALS Steel plate: – Density ρ = 7800 kg/m 3 ; – Young modulus E = 192 GPa; – Yield strength σ т = 350 MPa; – ultimate strength σ в = 500 MPa; – unit elongation δ = 21%; – coefficient of thermal expansion α = 11,4 ºС-1 (100ºС). Explosive - apparent density ρ ВВ = 740 kg/m 3 - velocity of detonation D = 2100 m/s. Sand - apparent density ρпес = 2800 kg/m 3 - compression strength σсж = 140 MPa Initial data 3

Mathematical simulation by means of LS-DYNA software for the following situations : 1.Porous background, dissimilar metals (steel+stainless steel) under the assumption that both plates material behaves as a solid body, technological gap between clad and base plates. 2.Porous background, dissimilar metals, under the assumption that a clad material behaves as a liquid, a base material behaves as a solid body, technological gap between clad and base plates. 4

Finite-element mesh The description of used finite-element mesh – Quantity of elements ~ ; – Quantity of units ~ ; – The maximal size of an element – 0.5 mm. Used models of materials and state equations. Explosive : – material model - #9 (Wilkins-Geyrouch); – state equation - # 2 (JWL). Metal plate : – material model - #15 (Johnson – Cook); – state equation - # 4 (Mi – Gruneisen); Sand background : – zero-material - #9; – state equation of porous material - # 8. Technological gap : – vacuum model - #140. 5

Distribution of material density in calculation area at t = 3 ms: a – the beginning clad process; b – the termination clad process The first variant of calculation Porous background, dissimilar metals under the assumption that both plates material behaves as a solid body, technological gap between clad and base plates. b a It is established that the left butt of clad and base plates is extended by 16,1 mm and 29 mm. The right butt of clad and base plates is extended by 71 mm and 61,3 mm accordingly. 6

b a The second variant of calculation Porous background, dissimilar metals, under the assumption that a clad material behaves as a liquid (base material behaves as a solid body ), technological gap between clad and base plates It is established that clad plate isnt extended and base plate is extended by 35 mm. 7 Distribution of material density in calculation area at t = 3 ms a – the beginning clad process; b – the termination clad process

clad platebase plate 12 t = 1000 μs t = 1500 μs t = 2000 μs 8 Change of pressure longitudinal along sheets

t = 2500 μs t = 2750 μs t = 3000 μs clad plate 1 base plate 2 9 Change of longitudinal stress along the sheets

The scheme of sheet deformation revealing after explosion welding 1010 Before explosion welding After explosion welding clad plate base plate The beginning of initiation Matching clad and base plates Places of matching clad and base plates Labels

Results of experiments1 Matching clad and base plates Before explosion welding After explosion welding The top view

The generalized results of explosion welding simulation Plate Moving from the initiation point Variant of calculation Experimental data at V 0 =2100 km/s 12 base to the right, mm16,100 clad to the right, mm2900 base to the left, mm61,33525 – 28 clad to the left, mm7100 base the beginning of process of lengthening, mm

Conclusions: 1. On the deformation behavior and change of geometric sizes of clad and base sheet influence the next parameters: – the initial geometric size of plates; – characteristics of physical-mechanical properties of welded plates materials and explosive. 2. The residual elongation of plates occurs nonuniformly from 80% of sheet length. The maximal residual deformation is near the opposite butt from the initiation point. 3. Calculation and experimental results showed that the clad sheet behaves as a viscous liquid and the base sheet behaves as a metal in solid state. 4. Tensile deformation of base sheet due to the impact of clad sheet goes ahead of the contact point along the full thickness to the joint formation. Consequently explosion welding at the end areas goes along the moving surface of base sheet.

Анимация 2. Движение материала в расчётной области (Начало процесса сварки)

Анимация 3. Движение материала в расчётной области (окончание процесса сварки)

Для описания поведения материалов листов была использована модель Джонсона-Кука со следующими значениями параметров модели: $ *MAT_JOHNSON_COOK $ $ mid ro g e pr dtf vp $ $ A B n c m tm tr epso E E e-5 $ $ cp pc SPALL IT D1 D2 D3 D E $ $ D5 0.0 $ *EOS_LINEAR_POLYNOMIAL $ $ eosid c0 c1 c2 c3 c4 c5 c $ $ e0 v $ MID – идентификатор материала в виде уникального номера; RO – массовая плотность; G – модуль сдвига; SIGY – предел текучести; PC – предельное давление при растяжении; SPALL – тип разрушения; EPS – эффективная пластическая деформация; ES – эффективное напряжение; EOSID – метка уравнения состояния; Е0 – начальная внутренняя энергия; V0 – начальный относительный объем.

Для описания поведения ВВ была использована модель MAT_HIGH_EXPLOSIVE_BURN и уравнение состояния JWL со следующими значениями параметров модели: $ *MAT_HIGH_EXPLOSIVE_BURN $ $ mid ro D PCJ BETA K G SIGY $ *EOS_JWL $ $ eosid a b r1 r2 omeg e0 v $ MID – идентификатор материала в виде уникального числа; RO – массовая плотность; D – скорость детонации; PCJ – давление Чэпмена-Жуге; EOSID – метка уровня состояния; V0 – начальный относительный объем.

Для описания поведения песка была использована модель MAT_NULL для пористого материала со следующими значениями параметров: $ *MAT_NULL $ $ mid ro pc mu terod cerod ym pr e+3 1.0e $ *EOS_TABULATED_COMPACTION $ $ eosid gama e0 v $ $ ev1 ev2 ev3 ev4 ev $ ev6 ev7 ev8 ev9 ev $ c1 c2 c3 c4 c5 0.8e e-4 2.4e-4 5.6e e-4 $ c6 c7 c8 c9 c e e e e e-4 $ t1 t2 t3 t4 t5 0.0e+6 0.0e+6 0.0e+6 0.0e+6 0.0e+6 $ t6 t7 t8 t9 t10 0.0e+6 0.0e+6 0.0e+6 0.0e+6 0.0e+6 $ k1 k2 k3 k4 k5 40.0e e e e e-4 $ k6 k7 k8 k9 k e e e e e-4 $ MID – идентификатор материала в виде уникального номера; RO – массовая плотность; PC – предельное давление при растяжении; MU – коэффициент вязкости; TEROD – относительный объем для разрушения при растяжении; GEROD – относительный объем для разрушения при сжатии; YM – модуль Юнга (используется только для нулевых балочных и оболочечных элементов); PR – коэффициент Пуассона (используется только для нулевых балочных и оболочечных элементов).

Выражение Джонсона (Johnson) и Кука (Cook) для напряжения текучести Уравнение состояния JWL задает давление в виде