В кубе A…D 1 найдите угол между прямыми AC и BD 1. Ответ. 90 о. Куб 1.

Презентация:



Advertisements
Похожие презентации
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
Advertisements

Угол в пространстве Углом в пространстве называется фигура, образованная двумя лучами с общей вершиной и одной из частей плоскости, ограниченной этими.
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием от точки до прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающи- мися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованная двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
ДВУГРАННЫЙ УГОЛ Двугранным углом называется фигура (рис. 1), образованную двумя полуплоскостями, с общей ограничивающей их прямой, и частью пространства,
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
РАССТОЯНИЕ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Расстоянием между двумя скрещивающимися прямыми в пространстве называется длина общего перпендикуляра, проведенного.
1. В кубе A…D 1 найдите угол между прямыми AB 1 и BC 1. Ответ: 60 o.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
Угол между прямыми в пространстве можно находить используя формулу Угол между прямыми где - направляющие векторы данных прямых. Однако угол между векторами.
ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ Пусть дана плоскость π и точка A пространства. Через точку A проведем прямую a, перпендикулярную плоскости π. Точку пересечения.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПРЯМОЙ Расстоянием между точкой и прямой в пространстве называется длина перпендикуляра, опущенного из данной точки на данную прямую.
УГОЛ МЕЖДУ ПРЯМЫМИ В ПРОСТРАНСТВЕ Углом между двумя пересекающимися прямыми в пространстве называется наименьший из углов, образованных лучами этих прямых.
РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ Расстоянием от точки до плоскости в пространстве называется длина перпендикуляра, опущенного из данной точки на данную.
УГОЛ МЕЖДУ ПРЯМОЙ И ПЛОСКОСТЬЮ Углом между наклонной и плоскостью называется угол между этой наклонной и ее ортогональной проекцией на данную плоскость.
Изобразите сечение единичного куба A…D 1, проходящее через вершины A, B, C 1. Найдите его площадь. Ответ..
Транксрипт:

В кубе A…D 1 найдите угол между прямыми AC и BD 1. Ответ. 90 о. Куб 1

В кубе A…D 1 найдите угол между прямыми AB 1 и BD 1. Ответ. 90 о. Куб 2

В кубе A…D 1 найдите угол между прямыми DA 1 и BD 1. Ответ. 90 о. Куб 3

В единичном кубе A…D 1 найдите косинус угла между прямыми AE и BE 1, где E и E 1 – середины ребер соответственно BC и B 1 C 1. Куб 4 Решение. Через точку A проведем прямую AF 1, параллельную BE 1. Искомый угол равен углу EAF 1. В треугольнике AEF 1 AE = AF 1 =, EF 1 =. По теореме косинусов находим Ответ.

В кубе A…D 1 найдите угол между прямыми AE и BF 1, где E и F 1 – середины ребер соответственно BC и C 1 D 1. Куб 5 Решение. Из точки F 1 опустим перпендикуляр F 1 F на прямую CD. Прямая AE перпендикулярна BF, следовательно, она перпендикулярна BF 1. Ответ. 90 о.

В правильном тетраэдре ABCD точки E, F, G – середины ребер AB, BD, CD. Найдите угол EFG. Решение. Прямые EF и FG параллельны прямым AD и BC, которые перпендикулярны. Следовательно, угол между ними равен 90 о. Ответ: 90 о. Пирамида 1

В правильной пирамиде SABCD, все ребра которой равны 1, точка E – середина ребра SC. Найдите тангенс угла между прямыми SA и BE. Ответ: Решение. Через точку E проведем прямую, параллельную SA. Она пересечет основание в точке O. Искомый угол равен углу OEB. В прямоугольном треугольнике OEB имеем: OB =, OE =. Следовательно, Пирамида 2

В правильной пирамиде SABCD, все ребра которой равны 1, точки E, F – середины ребер SB и SC. Найдите косинус угла между прямыми AE и BF. Пирамида 3 Ответ: Решение. Обозначим G середину ребра AD. Прямая GF параллельна AE. Искомый угол равен углу BFG. В треугольнике BFG имеем: BF = GF =, BG =. По теореме косинусов находим

В правильной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, найдите угол между прямыми SA и BF. Пирамида 4 Ответ: 90 о.

В правильной пирамиде SABCDEF, стороны основания которой равны 1, а боковые ребра равны 2, точка G – середина ребра SC. Найдите тангенс угла между прямыми SA и BG. Пирамида 5 Ответ: Решение. Обозначим H середину отрезка AC. Прямая GH параллельна SA. Искомый угол равен углу BGH. В треугольнике BGH имеем: BH= 0,5, GH = 1.

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, найдите косинус угла между прямыми AB 1 и BC 1. Решение: Достроим призму до 4-х угольной призмы. Проведем AD 1 параллельно BC 1. Искомый угол будет равен равен углу B 1 AD 1. В треугольнике AB 1 D 1 Используя теорему косинусов, находим Призма 1

В правильной треугольной призме ABCA 1 B 1 C 1, все ребра которой равны 1, точки D, E – середины ребер A 1 B 1 и B 1 C 1. Найдите косинус угла между прямыми AD и BE. Призма 2 Решение. Обозначим F середину отрезка AC. Прямая EF параллельна AD. Искомый угол равен углу BEF. В треугольнике BGH имеем: По теореме косинусов находим Ответ.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми AA 1 и BD 1. Призма 3 Решение: Искомый угол равен углу B 1 BD 1. В прямоугольном треугольнике B 1 BD 1 B 1 D 1 = ; B 1 B =1; BD 1 =2. Следовательно, искомый угол равен 60 о. Ответ. 60 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите тангенс угла между прямыми AA 1 и BE 1. Призма 4 Решение: Искомый угол равен углу B 1 BE 1. В прямоугольном треугольнике B 1 BE 1 катет B 1 E 1 равен 2; катет B 1 B равен 1. Следовательно, Ответ. 2.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми AС 1 и BE. Призма 5 Ответ. 90 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми AD 1 и BF. Призма 6 Ответ. 90 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми AB 1 и BE 1. Призма 7 Ответ. 90 о.

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми BA 1 и FC 1. Призма 8 Ответ. Решение: Через середину O отрезка FC 1 проведем прямую PP 1, параллельную BA 1. Искомый угол равен углу POC 1. В треугольнике POC 1 имеем: PO = ; OC 1 = PC 1 =. Следовательно,

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и BC 1. Решение: Пусть O 1 –центр правильного 6-ка A 1 …F 1. Тогда AO 1 параллельна BC 1, и искомый угол равен углу B 1 AO 1. В равно- бедренном треугольнике B 1 AO 1 O 1 B 1 =1; AB 1 =AO 1 = Применяя теорему косинусов, получим Призма 9

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и BD 1. Решение: Искомый угол равен углу B 1 AE 1. В треугольнике B 1 AE 1 AB 1 = ; B 1 E 1 = AE 1 = 2. Следовательно, Призма 10

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и BF 1. Решение: Пусть O, O 1 – центры оснований призмы. На оси призмы отложим O 1 O 2 = OO 1. Тогда F 1 O 2 будет параллельна AB 1, и искомый угол будет равен углу BF 1 O 2. В треугольнике BF 1 O 2 BO 2 = BF 1 = 2; F 1 O 2 = По теореме косинусов, имеем Призма 11

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и CD 1. Решение: Искомый угол равен углу CD 1 E. В треугольнике CD 1 E CD 1 = ED 1 = ; CE = По теореме косинусов, имеем Призма 12

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и CE 1. Решение: Заметим, что CE 1 параллельна BF 1. Следовательно, искомый угол равен углу между AB 1 и BF 1, который был найден ранее. А именно, Призма 13

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и CF 1. Решение: Пусть O, O 1 – центры оснований призмы. На оси призмы отложим O 1 O 2 = OO 1. Тогда F 1 O 2 будет параллельна AB 1, и искомый угол будет равен углу CF 1 O 2. В треугольнике CF 1 O 2 CO 2 = CF 1 = F 1 O 2 = Тогда Призма 14

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и CA 1. Решение: На продолжении BB 1 отложим B 1 B 2 = BB 1. Тогда A 1 B 2 будет параллельна AB 1, и искомый угол будет равен углу CA 1 B 2. В треугольнике CA 1 B 2 CA 1 = 2; CB 2 = A 1 B 2 = Тогда Призма 15

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и DF 1. Решение: Заметим, что DF 1 параллельна CA 1. Следовательно, искомый угол равен углу между AB 1 и CA 1, который был найден ранее. А именно, Призма 16

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите угол между прямыми AB 1 и DA 1. Решение: На продолжении BB 1 отложим B 1 B 2 = BB 1. Тогда A 1 B 2 будет параллельна AB 1, и искомый угол будет равен углу DA 1 B 2. В треугольнике DA 1 B 2 DA 1 = DB 2 = A 1 B 2 = Следовательно, искомый угол равен 90 o. Призма 17

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AB 1 и DC 1. Решение: Пусть O – центр основания призмы. Отрезки OC 1 и OB 1 будут равны и параллельны отрезкам AB 1 и DC 1, соответствен- но. Искомый угол будет равен углу B 1 OC 1. В треугольнике B 1 OC 1 OB 1 = OC 1 = ; B 1 C 1 = 1. Тогда, по теореме косинусов Призма 18

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AC 1 и BD 1. Решение: Заметим, что AE 1 параллельна BD 1. Следовательно, искомый угол равен углу C 1 AE 1. В треугольнике C 1 AE 1 AC 1 = AE 1 = 2; C 1 E 1 = По теореме косинусов, имеем Призма 19

В правильной 6-й призме A…F 1, ребра которой равны 1, найдите косинус угла между прямыми AC 1 и BE 1. Решение: Заметим, что отрезок GG 1, проходящий через середины ребер AF и C 1 D 1, параллелен и равен отрезку AC 1. Искомый угол равен углу G 1 OE 1. В треугольнике G 1 OE 1 OG 1 = 1; OE 1 = ; G 1 E 1 =. По теореме косинусов, имеем Призма 20