Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ Электростатика.

Презентация:



Advertisements
Похожие презентации
Прибс Роман класс 10-11а Лицей 1580 при МГТУ им. Н.Э. Баумана Ионизация газа. Несамостоятельный газовый разряд.
Advertisements

З Д Р А В С Т В У Й Т Е!
Рекомбинация Самостоятельный газовый разряд (тлеющий, коронный, искровой, дуговой) Несамостоятельный газовый разряд.
Электрический ток в газах Самостоятельный и несамостоятельный разряды. Типы самостоятельного разряда и их техническое применение.
ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ. В обычных условиях газы состоят из нейтральных атомов и молекул и являются диэлектриками.
Электрический ток в газах ГОУ лицей 64 Приморского района г Санкт – Петербурга, учитель физики Пьянова Л.В.
Выполнили: ученицы 10 «Б» класса Глушкова Ксения, Гордеева Александра.
Подготовили: ученицы 10 «А» класса Юрина Анжелика и Лукина Линара.
@ Краснополянская школа 1 Домнин Константин Михайлович 2006 год Электрический ток в различных средах.
Виды самостоятельного разряда. 1 процесс- возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваются.
излучение e- e- e- e тепло ионизация e- e рекомбинация.
Электрический ток в газах. При комнатной температуре и небольшой напряженности электрического поля газы являются диэлектриками. При комнатной температуре.
Электрический ток в плазме. - это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости.
Электрический ток в газах. В обычных условиях газы состоят из нейтральных атомов и молекул и являются диэлектриками.
Ток в газах при низком давлении. Ток в газах при низком разряде При низких давлениях длина свободного пробега электрона сравнима с расстоянием от катода.
Преподаватель Парыгина Л.В.. Тема урока «Структура сварочной дуги» Изучив данный учебный элемент, вы будете знать: условия возникновения сварочной дуги;
ТЕХНИЧЕСКОЕ ПРИМЕНЕНИЕ ГАЗОВОГО РАЗРЯДА ГАЗОВЫЙ РАЗРЯД- совокупность электрических, оптических и тепловых явлений, сопровождающих прохождение электрического.
Плазма ИОНИЗИРОВАННЫЙ ГАЗ МГОЛ 1. Плазма (от греч. πλάσμα «вылепленное», «оформленное») частично или полностью ионизированный газ, образованный из нейтральных.
1 1. Условие самостоятельности разряда. 2. Кривые Пашена. 3. Время развития разряда. 4. Пробой газа в неоднородном электрическом поле. 5. Возникновение.
Транксрипт:

Кузнецов Сергей Иванович доцент кафедры ОФ ЕНМФ ТПУ Электростатика

Тема 8. ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ 8.1. Явление ионизации и рекомбинации в газах Явление ионизации и рекомбинации в газах Явление ионизации и рекомбинации в газах Явление ионизации и рекомбинации в газах Несамостоятельный газовый разряд Несамостоятельный газовый разряд Несамостоятельный газовый разряд Несамостоятельный газовый разряд Самостоятельный газовый разряд Самостоятельный газовый разряд Самостоятельный газовый разряд Самостоятельный газовый разряд Типы разрядов Типы разрядов Типы разрядов Типы разрядов Применение газового разряда Применение газового разряда Применение газового разряда Применение газового разряда Понятие о плазме Понятие о плазме Понятие о плазме Понятие о плазме.

Основные соотношения n i = n r – условие равновесия возникающих и рекомбинирующих ионов без поля.n i = n r – условие равновесия возникающих и рекомбинирующих ионов без поля. n i = n r + n j – условие равновесия ионов в электрическом поле.n i = n r + n j – условие равновесия ионов в электрическом поле. 1) Случай слабого поля n j

8.1. Явление ионизации и рекомбинации в газах Процесс ионизации заключается в том, что под действием высокой температуры или некоторых лучей молекулы газа теряют электроны и тем самым превращаются в положительные ионы. Процесс ионизации заключается в том, что под действием высокой температуры или некоторых лучей молекулы газа теряют электроны и тем самым превращаются в положительные ионы. Т ок в газах – это встречный поток ионов и свободных электронов. Т ок в газах – это встречный поток ионов и свободных электронов. Одновременно с процессом ионизации идёт обратный процесс рекомбинации (иначе - молизации). Одновременно с процессом ионизации идёт обратный процесс рекомбинации (иначе - молизации). Рекомбинация – это нейтрализация при встрече разноименных ионов или воссоединение иона и электрона в нейтральную молекулу (атом). Рекомбинация – это нейтрализация при встрече разноименных ионов или воссоединение иона и электрона в нейтральную молекулу (атом). Факторы, под действием которых возникает ионизация в газе, называют внешними ионизаторами, а возникающая при этом проводимость называется несамостоятельной проводимостью. Факторы, под действием которых возникает ионизация в газе, называют внешними ионизаторами, а возникающая при этом проводимость называется несамостоятельной проводимостью.

8.2 НЕСАМОСТОЯТЕЛЬНЫЙ ГАЗОВЫЙ РАЗРЯД Несамостоятельным газовым разрядом называется такой разряд, который, возникнув при наличии электри- ческого поля, может существовать только под действием внешнего ионизатора.

Основные обозначения N 0 – число молекул газа в единице V N 0 – число молекул газа в единице V N – число ионов одного знака; N – число ионов одного знака; N/V = n – концентрация ионов N/V = n – концентрация ионов n i – число пар ионов возникающих под действием ионизатора за 1 сек в единице Vn i – число пар ионов возникающих под действием ионизатора за 1 сек в единице V n r – число пар ионов рекомбинирующих за 1 сек в единице объемаn r – число пар ионов рекомбинирующих за 1 сек в единице объема n j – число пар ионов уходящих из газоразрядного промежутка к электродам за 1 секn j – число пар ионов уходящих из газоразрядного промежутка к электродам за 1 сек и – скорости направленного движения положительных и отрицательных ионов и – скорости направленного движения положительных и отрицательных ионов μ – подвижность ионов μ – подвижность ионов q – заряд, переносимый ионами q – заряд, переносимый ионами – плотность тока – плотность тока – напряженность электрического поля – напряженность электрического поля d – расстояние между электродами d – расстояние между электродами

Равновесное состояние, при котором число пар ионов, возникающих под действием ионизатора за одну секунду в единице объёма, равно числу пар рекомбинировавших ионов. При этом скорость ионизации равна скорости рекомбинации:.

Условие равновесия в случае слабого поля

1. Слабое поле 1. Слабое поле Слабый ток

Вывод: в случае слабых электрических полей ток при несамостоятельном разряде подчиняется закону Ома.

2. Сильное поле n r

Максимальное значение тока, при котором все образующиеся ионы уходят к электродам, называется ток насыщения. Сильное поле Сильное поле n r

3. Дальнейшее увеличение напряженности поля ведет к образованию лавины электронов

Происходит лавинообразное размножение первичных ионов и электронов, созданных внешним ионизатором и усиление разрядного тока.

Вывод: для несамостоятельного разряда при малых плотностях тока, т.е. когда основную роль в исчезновении зарядов из газоразрядного промежутка играет процесс рекомбинации, имеет место закон Ома ( ); при больших полях закон Ома не выполняется – наступает явление насыщения, а при полях превышающих – возникает лавина зарядов, обуславливающая значительное увеличение плотности тока.

8.3. Самостоятельный газовый разряд Самостоятельный разряд такой газовый разряд, в котором носители тока возникают в результате тех процессов в газе, которые обусловлены приложенным к газу напряжением. Самостоятельный разряд такой газовый разряд, в котором носители тока возникают в результате тех процессов в газе, которые обусловлены приложенным к газу напряжением. Т. е. данный разряд продолжается и после прекращения действия ионизатора. Т. е. данный разряд продолжается и после прекращения действия ионизатора.

Когда межэлектродный промежуток перекрывается полностью проводящей газоразрядной плазмой, наступает его пробой. Напряжение, при котором происходит пробой межэлектрод- ного промежутка, называется пробивным напряжением.

Условия возникновения и поддержания самостоятельного газового разряда

1. При больших напряжениях между электродами газового промежутка ток сильно возрастает. Это происходит вследствие того, что возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваются с нейтральными молекулами газа и ионизируют их. В результате этого образуются вторичные электроны и положительные ионы ( процесс 1 )

2. Ускоренные электрическим полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2);

3. Положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние; переход таких молекул в основное состояние сопровождается испусканием фотонов (процесс 3);

4. Фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит процесс фотонной ионизации молекул (процесс 4);

5. Выбивание электронов из катода под действием фотонов (процесс 5);

6. Наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают, кроме электронных лавин, еще и ионные, сила тока растет уже практически без увеличения напряжения.

Рассмотрим условия возникновения и поддержания самостоятельного разряда. Рассмотрим условия возникновения и поддержания самостоятельного разряда. 1) При больших напряжениях между электродами газового промежутка ток сильно возрастает. Это происходит вследствие того, что возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваются с нейтральными молекулами газа и ионизируют их, в результате чего образуются вторичные электроны и положительные ионы (процесс 1). 1) При больших напряжениях между электродами газового промежутка ток сильно возрастает. Это происходит вследствие того, что возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваются с нейтральными молекулами газа и ионизируют их, в результате чего образуются вторичные электроны и положительные ионы (процесс 1). 2) ускоренные электрическим полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 2) ускоренные электрическим полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 3) положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние; переход таких молекул в основное состояние сопровождается испусканием фотонов (процесс 3); 3) положительные ионы, сталкиваясь с молекулами газа, переводят их в возбужденное состояние; переход таких молекул в основное состояние сопровождается испусканием фотонов (процесс 3); 4) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит процесс фотонной ионизации молекул (процесс 4); 4) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит процесс фотонной ионизации молекул (процесс 4); 5) выбивание электронов из катода под действием фотонов (процесс 5); 5) выбивание электронов из катода под действием фотонов (процесс 5); 6) наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают, кроме электронных лавин, еще и ионные, сила тока растет уже практически без увеличения напряжения. 6) наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают, кроме электронных лавин, еще и ионные, сила тока растет уже практически без увеличения напряжения.

8.4. Типы разрядов В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов: В зависимости от давления газа, конфигурации электродов и параметров внешней цепи существует четыре типа самостоятельных разрядов: тлеющий разряд; тлеющий разряд;тлеющий разрядтлеющий разряд искровой разряд; искровой разряд;искровой разрядискровой разряд дуговой разряд; дуговой разряд;дуговой разряддуговой разряд коронный разряд. коронный разряд.коронный разрядкоронный разряд

Тлеющий разряд Тлеющий разряд возникает при низких давлениях (в вакуумных трубках). Тлеющий разряд возникает при низких давлениях (в вакуумных трубках). Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами. Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой

Тлеющий разряд 1. Астоново темное пространство; 2. Катодная светящаяся пленка; 3. Катодное темное пространство; 4. Тлеющее свечение; 5. Фарадеево темное пространство; 6. Положительный столб.

Искровой разряд Искровой разряд возникает в газе обычно при давлениях порядка атмосферного Р ат. Искровой разряд возникает в газе обычно при давлениях порядка атмосферного Р ат. Он характеризуется прерывистой формой. Он характеризуется прерывистой формой. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга. По внешнему виду искровой разряд представляет собой пучок ярких зигзагообразных разветвляющихся тонких полос, мгновенно пронизывающих разрядный промежуток, быстро гаснущих и постоянно сменяющих друг друга. Эти полоски называют искровыми каналами. Эти полоски называют искровыми каналами.

Искровой разряд Р ат

После того, как разрядный промежуток «пробит» искровым каналом, сопротивление его становится малым, через канал проходит кратковременный импульс тока большой силы, в течение которого на разрядный промежуток приходится лишь незначительное напряжение. Если мощность источника не очень велика, то после этого импульса тока разряд прекращается. Напряжение между электродами начинает повышаться до прежнего значения, и пробой газа повторяется с образованием нового искрового канала.

В естественных природных условиях искровой разряд наблюдается в виде молнии. На рисунке изображен пример искрового разряда – молния, продолжительностью 0,2 ÷ 0,3с силой тока 10 4 – 10 5 А, длиной 20 км

Диаметр канала молнии равен примерно 1 см, температура в канале молнии равна примерно °С, продолжительность разряда составляет доли секунды.

Дуговой разряд Дуговой разряд. Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным возникает новая форма газового разряда, называемая дуговым разрядом. Дуговой разряд. Если после получения искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд из прерывистого становится непрерывным возникает новая форма газового разряда, называемая дуговым разрядом. Р ат Р ат U= В U= В I = 100 А I = 100 А

Ток при дуговом разряде резко увеличивается, достигая десятков и сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд поддерживается, главным образом, за счет термоэлектронной эмиссии с поверхности катода. На практике – это сварка, мощные дуговые печи.

Коронный разряд Коронный разряд возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Коронный разряд возникает в сильном неоднородном электрическом поле при сравнительно высоких давлениях газа (порядка атмосферного). Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие). Р ат Такое поле можно получить между двумя электродами, поверхность одного из которых обладает большой кривизной (тонкая проволочка, острие). Р ат

Когда электрическое поле вблизи электрода с большой кривизной достигает примерно В/м, вокруг него возникает свечение, имеющее вид оболочки или короны, откуда и произошло название заряда.

8.5. Применение газового разряда Самыми распространёнными приборами, основанными на явление газового разряда, являются точные приборы, которые можно разделить на следующие групп шесть групп. Самыми распространёнными приборами, основанными на явление газового разряда, являются точные приборы, которые можно разделить на следующие групп шесть групп. Тиратроны и газотроны тлеющего разряда. Тиратроны и газотроны тлеющего разряда. Стабиллитроны тлеющего и коронного разрядов. Стабиллитроны тлеющего и коронного разрядов. Счётчики коммутаторные векотроны. Счётчики коммутаторные векотроны. Индикаторы тлеющего разряда. Индикаторы тлеющего разряда. Газотроны тиратроны с наполненным катодом. Газотроны тиратроны с наполненным катодом. Импульсные водородные тиратроны с наполненным катодом. Импульсные водородные тиратроны с наполненным катодом.

Газоразрядные приборы очень разнообразны, и различаются видом используемого разряда. Газоразрядные приборы очень разнообразны, и различаются видом используемого разряда. Они используются для стабилизации напряжения, защиты от перенапряжения, выполнения переключательных функций, индикации электрического состояния и т. д. Они используются для стабилизации напряжения, защиты от перенапряжения, выполнения переключательных функций, индикации электрического состояния и т. д. В последнее время для повышения защиты уязвимых и ответственных объектов, например, пусковых комплексов ракет, пытаются реализовать различные формы управления молнией, в частности лазерное инициирование молнии. Лазерное инициирование основано на создании в воздухе ионизованного канала с помощью лазерного излучения.

8.6. Понятие о плазме В газовом разряде возникает большое количество положительных ионов вследствие высокой эффективности ударной ионизации, причем концентрация ионов и электронов одинакова. В газовом разряде возникает большое количество положительных ионов вследствие высокой эффективности ударной ионизации, причем концентрация ионов и электронов одинакова. Такая система из электронов и положительных ионов, распределенных с одинаковой концентрацией, называется плазмой. Такая система из электронов и положительных ионов, распределенных с одинаковой концентрацией, называется плазмой. Плазма, в которой выполняется равенство: (где индексы «э», «и», «а» относятся к электронам, ионам, атомам) называется изотермической. Такая плазма имеет место при ионизации с помощью высокой температуры (дуга, горящая при атмосферном и выше давлении, искровой канал); например, в дуге сверхвысокого давления (до 1000 атм.) температура плазмы достигает К, температура плазмы при термоядерном взрыве – порядка нескольких десятков миллионов градусов, в установке «ТОКАМАК» для исследования термоядерных реакций – порядка K.

Важнейшие свойства плазмы: а) сильное взаимодействие с внешними магнитными и электрическими полями, связанное с ее высокой электропроводностью; а) сильное взаимодействие с внешними магнитными и электрическими полями, связанное с ее высокой электропроводностью; б) специфическое коллективное взаимодействие частиц плазмы, осуществляющееся через усредненные электрические и магнитные поля, которые создают сами эти частицы; б) специфическое коллективное взаимодействие частиц плазмы, осуществляющееся через усредненные электрические и магнитные поля, которые создают сами эти частицы; в) благодаря коллективным взаимодействиям плазма ведет себя как своеобразная упругая среда, в которой легко возбуждаются и распространяются различного рода колебания и волны (например, ленгмюровские колебания плазмы); в) благодаря коллективным взаимодействиям плазма ведет себя как своеобразная упругая среда, в которой легко возбуждаются и распространяются различного рода колебания и волны (например, ленгмюровские колебания плазмы); г) во внешнем магнитном поле плазма ведет себя как диамагнитная среда; г) во внешнем магнитном поле плазма ведет себя как диамагнитная среда; д) удельная электрическая проводимость полностью ионизованной плазмы не зависит от плотности плазмы и увеличивается с ростом термодинамической температуры, и при Т 10 7 К столь велика, что плазму можно приближенно считать идеальным проводником д) удельная электрическая проводимость полностью ионизованной плазмы не зависит от плотности плазмы и увеличивается с ростом термодинамической температуры, и при Т 10 7 К столь велика, что плазму можно приближенно считать идеальным проводником

Плазма – наиболее распространенное состояние вещества во Вселенной. Солнце и другие звезды состоят из полностью ионизованной высокотемпературной плазмы. Основной источник энергии излучения звезд – термоядерные реакции синтеза, протекающие в недрах звезд при огромных температурах.

Холодные туманности и межзвездная среда также находятся в плазменном состоянии.

В околоземном пространстве слабоионизованная плазма находится в радиационных поясах и ионосфере Земли. С процессами, происходящими в этой плазме, связаны такие явления, как магнитные бури, нарушения дальней радиосвязи и полярные сияния

Основной практический интерес к физике плазмы связан с решением проблемы управляемого термоядерного синтеза – процесс слияния легких атомных ядер при высоких температурах ~ 10 8 К. Энергетический выход реактора составляет 10 5 кВт/м 3 Схема токамака

Схема Казахстанского токамака КТМ в сечении и его вид с вакуумной камерой Осуществление управляемой термоядерной реакцией в высокотемпературной плазме позволит человечеству в будущем получить практически неисчерпаемый источник энергии.

МГД - генератор Движение плазмы в магнитном поле используется в методе прямого преобразования внутренней энергии ионизованного газа в электрическую. Этот метод осуществлен в магнитогазодинамическом генераторе

Свойства плазмы излучать электромагнитные волны ультрафиолетового диапазона используются в современных телевизорах с плоским плазменным экраном. Ионизация плазмы в плоском экране происходит в газовом разряде. Разряд возникает при бомбардировке молекул газа электронами, ускоренными электрическим полем самостоятельный разряд.

Плоский телевизор с экраном из газоразрядных элементов содержит около миллиона маленьких плазменных ячеек, собранных в триады RGB – пиксели (pixel – picture element).