СТАТУС ПРОЕКТA NUSTAR ЭКСПЕРИМЕНТЫ НА РЕЛЯТИВИСТКИХ РАДИОАКТИВНЫХ ПУЧКАХ УСКОРИТЕЛЬНОГО КОМПЛЕКСА FAIR ( GSI, DARMSTADT, GERMANY )

Презентация:



Advertisements
Похожие презентации
FAIR, NUSTAR, R3B + EXL FAIR – Facility for Antiproton and Ion Research NUSTAR – Nuclear Structure, Astrophysics, and Reactions NUSTAR: HISPEC-DESPEC –
Advertisements

TYPE AND DESIGN FEATURES OF COHERENT RADIATION SOURCES.
1.Установка SPIN-P02 (ИТЭФ). 2.Изучение реакции перезарядки (ПИЯФ). 3.Crystal Barrel (ISKP, Bonn). 4.Crystal Ball (Univ. Mainz). 5.Новый ПВА для пион-нуклонного.
Кластерные особенности легких ядер в процессах релятивистской фрагментации П.И. Зарубин (ОИЯИ)
ИЗМЕРЕНИЕ ЭЛЕКТРИЧЕСКОЙ И МАГНИТНОЙ ПОЛЯРИЗУЕМОСТЕЙ ПРОТОНА И НЕЙТРОНА. СТАТУС СОВМЕСТНОГО (ПИЯФ-ТУД) ЭКСПЕРИМЕНТА НА ЭЛЕКТРОННОМ УСКОРИТЕЛЕ (S-DALINAC)
ХИГГС-БОЗОН В ЭКСПЕРИМЕНТАХ ATLAS и CMS НА БАК В.А.Щегельский Семинар ОФВЭ и ОТФ 30 мая 2013.
Специализированный источник синхротронного излучения Anka Характеристики и экспериментальные возможности.
Protein-water interactions Water associated with proteins can be described as being one of the following three types: Free water Associated (bound) water.
Recent advances in intercalation compounds physics.
Trigger – scintillation counters S1-S Trigger conditions: S1 – to choose a narrow (0.1 mm or less) beam fraction.
Monitoring system of the LHCb electromagnetic calorimeter NEC2007, Varna, Bulgaria Ivan Korolko (ITEP Moscow)
Работа сотрудничества в 2005 г. П. И. Зарубин ОИЯИ.
The Pulse Generator for the Supersonic Flow Structure Control ГЕНЕРАТОР ИМПУЛЬСОВ ДЛЯ УПРАВЛЕНИЯ СТРУКТУРОЙ СВЕРХЗВУКОВОГО ПОТОКА Khristianovich Institute.
Ya. Karlik, Kamchatka Hydro-Physics Inst. V. Svet, Acoustic Inst., Moscow Converted Hydro-Acoustic Array MG-10M as Basic Module for a Deep-Water Nu-Telescope.
ИССЛЕДОВАНИЕ СТРУКТУРЫ НЕЙТРОННОГО ГАЛО В РЕАКЦИИ КВАЗИСВОБОДНОГО РАССЕЯНИЯ ПРОТОНА НА ГАЛО-ЯДРЕ 6 He Г.Е. Беловицкий, В.П.Заварзина, С.В.Зуев, Е.С.Конобеевский,
Diffraction and Interference. Interference and Diffraction Distinguish Waves from Particles O The key to understanding why light behaves like waves is.
July 23, 2015Refresher Course1 Refresher Course in Chemistry: Highlights of Structure and Reactivity for Todays Chemist TIME RESOLVED SPECTROSCOPY [T.R.S.]:
7/23/20151 Relativistic electron beam transport simulation models German Kurevlev.
1 UNIT-7 FIBER OPTICS. FIBER OPTICS. HOLOGRAPHY. HOLOGRAPHY.
1 Molecular reactor Faraday Lab Ltd. 2 Goals Development of scientific conception presented by Irving Longmuir 80 years ago. Investigation of hydrogen.
Транксрипт:

СТАТУС ПРОЕКТA NUSTAR ЭКСПЕРИМЕНТЫ НА РЕЛЯТИВИСТКИХ РАДИОАКТИВНЫХ ПУЧКАХ УСКОРИТЕЛЬНОГО КОМПЛЕКСА FAIR ( GSI, DARMSTADT, GERMANY )

R3B Russian participation: Neutron detector, gamma spectrometer, active target. РНЦ КИ, ОИЯИ, ПИЯФ, РФЯЦ-ВНИИЭФ

FAIR: Beam intensities x 10 4, clean beams, more sophisticated detectors GSI FAIR: SIS-100 Super FRS experimental setups

RIB production Rates at FAIR

FAIR, NUSTAR, R3B + EXL R3B – studies at external beams of nuclei EXL – studies at internal beams of nuclei at the NESR ring Physics goals: Nuclear density distributions, single-particle structure, shell-occupation probabilities, unbound states, nuclear resonances, transition strengths, astrophysical S factor, giant dipole and quadrupole strength, B(E2), deformations, Gamov-Teller strength, reaction mechanism, nuclear waste transmutation,… Reaction type: Elastic and inelastic pA scattering, total reaction and interaction cross sections, knockout and quasifree scattering, electromagnetic excitation and dissociation, charge-exchange reactions, fission, spallation, fragmentation

Experiments with PNPI active targets 1.Diffraction scattering of high energy hadrons: PNPI(Gatchina, ), IHEP(Serpuhov, ), CERN( ) and SACLEY( ). 2.Muon catalyzed pd, dd, dt, dHe3 fusion: PNPI ( ) and PSI ( ). 3.Muon capture experiments at PSI: Muon capture by He-3(1993), Muon capture by proton ( ) and Muon capture by deuteron from Proton diffraction scattering on nuclei (in inverse kine- matics) and nuclei matter distributions (GSI,from1993). 5. Nucleon polarizabilities (IKP-TUD,from 1999).

new IKAR can be used at FAIR for studies of small angular p-A and He-A elastic and inelastic scattering for heavier A (studies at small momentum transfers) IKAR has been already used to study pHe, pLi, pBe, pB and pC elastic scattering

132 Sn beam Anode Grid Cathode recoiling proton New IKAR chamber A correction on the energy lost in the central dead region It is necessary to exclude a contribution from ionization by the projectile (a simplest version of the anode)

Farouk Aksouh Energy loss and straggling for a 132 Sn beam at 700 MeV/u ΔE [MeV/u] δE [MeV/u] δθ [mrad] - cumulative

Signal from the recoil proton and the pedectal signal from the projectile nucleus 17C.

Multiple Coulomb scattering of the projectile: δθ s ~ Z/A mrad < t< (GeV/c)2 2 E p < 13 MeV σ tot 600 mb (in previous exp. – 60 mb) θ s < 1 mrad Farouk Aksouh

Side view of the new IKAR

Anodes of new IKAR

Energy and angular resolution of the ionization chamber(IC) 1. Energy resolution (Eres) depends on the value of the input anode capasity (Ca) and on the amplifier pass band (Tform). Eres(keV)=10+0.2Ca(pF), Eres~20keV (rms) at Ca=50pF. 2. Angular resolution(DFi). Angle(Fi) of recoil particle is defined by rise time(Tr) of the pulse of the anode: Tr=Lga/Va + dZ/Vc, where,Va and Vc are the electron drift velosities in the grid-anode and grid-cathode volumes, Lga is the grid-anode distance. dZ is the projection of the track on the IC axis: sin(Fi)=dZ/R where, R is the recoil particle path. Multiple Coulomb scattering of the recoil particle (DC_Fi) depends from energy and gas pressure: DC_Fi ~3-5mrad (rms).

PNPI can fabricate a new IKAR setup with the relevant electronics Main parameters of the new IKAR: anode and cathode diameter – 1.0 m, volume ~1000 l, pressure – from 1 bar up to 25 bar, 2 sections with the cathode-grid distance of 25 cm, highly segmented anodes: 10 rings of 5 cm width, divided on 20 segments in the azimuthal angle, total number of anodes ~200 channels. The chamber can be filled with H 2, D 2, 3 He, 4 He. Effective target length – 40 cm Effective target thickness – 4*10 22 cm -2 Luminosity (I = 10 4 s -1 ) – 4*10 26 cm -2 s -1 E p (max) = 15 MeV, t max = 0.03 (GeV/c) 2 (H 2, 25 bar)

(He,He') inelastic scattering Active target from PSI muon capture experiment (MuCap). PNPI TPC in coincidence with Gamma spectrometer (CALIFA).

Particle-recoil semiconductor detector Ø 1 м Si detectors d = 100, 300 μm, Si(Li) detectors d = 9 mm, 100x100 mm 2, N 500. Gamma-detector CsI(Tl) crystals, 5000 elements ~ 10mm x 30 mm x mm Si semiconductor detectors and CsI(Tl) gamma detectors – for EXL and R3B

Cross-sectional diagram of the MuCap detector

Schematic view of the TPC The trajectories of charged particles are measured in 3D space with resolution (rms) 2-3 mm.

The signal on TPC anode wires from -e decay event

Properties of an active targets - ionization chambers 1. Filling gas--H2, D2, He3, He4… at pressure 1-25 bar. 2. Registration of all charged particles (p,d,t, He3,He4) inside of an active target with the energy in the range of 1-15 MeV. 3. Energy resolution keV(rms). 4. Efficiency of detection charge particles (T>1MeV) is ~100%. 5. Measurements of the interaction point inside of the gas volume with resolution of ~0.5 mm (rms). 6. Angular resolution ~5 mrad (rms) for recoil particles. 7. Avoiding the wall effects on the level of less than 0.1%.

R3B Russian participation: Neutron detector, gamma spectrometer, active target. РНЦ КИ, ОИЯИ, ПИЯФ, РФЯЦ-ВНИИЭФ

WBSВид работИсполнители Запраши- ваемая сумма 1.2.5R3B Нейтронный спектрометр (узлы)ПИЯФ1400 k Гамма спектрометр (узлы)РНЦ КИ, ОИЯИ, РФЯЦ-ВНИИЭФ1000 k Активная мишень (полностью)ПИЯФ 1238 k 1.2.9EXL Нейтрон. спектрометр (полностью)ПИЯФ2800 k Кремниевые планарн. детекторыФТИ, ЗАО НИИМВ, ПИЯФ5880 k Толстые Si Li-дрейф. детекторыПИЯФ1000 k Электроника к детекторамФТИ, ЗАО НИИМВ1500 k Гамма спектрометр (полностью)РНЦ КИ, ОИЯИ, РФЯЦ-ВНИИЭФ3626 k Трек. детект. (проп. камеры) (полн.)ПИЯФ 224 к 1.2.3MATS Блок калибровки (полностью)ПИЯФ 275 к Детекторы медлен. частиц (узлы)ПИЯФ 174 к 1.2.6ILIMA Кремниевые детекторы (полн.)ПИЯФ 210 к 1.2.8ELISe Монитор светимости (полностью)РНЦ КИ, ИЯИ 45 к Детекторы LAHReSИЯИ 425 k Запрос на финансирование для экспериментов NuStar

NUSTAR NUSTAR – Nuclear Structure, Astrophysics, and Reactions : HISPEC-DESPEC – High-Resolution In-Flight and Decay Spectroscopy ILIMA - Schottky and Isochronos mass spectroscopy MATS - Mass measurements with Penning Traps LASPEC – Laser Spectroscopy investigations ELISE – Electron scattering in a storage ring AIC – Antiproton Ion Collider R3B – Reactions with Relativistic Radioactive Beams EXL – Exotic Light-ions (exotic nuclei studied in light-ion induced reactions at the NESR ring) Russian participation: R3B, MATS, ILIMA, EXL, ELISE R3B, MATS, - modules 1-3 EXL, ELISE, ILIMA – modules 4-5 Russian participants: РНЦ КИ, ОИЯИ, РФЯЦ-ВНИИЭФ, ЗАО НИИМВ, ФТИ РАН, ИЯИ РАН, ПИЯФ.

Work Group Daresbury (R. Lemmon) Liverpool (M. Chartier) Santiago ( D. Cortina?) KVI ( N. Kalantar) Leuven (R. Raabe) St. Petersburg (G. Alkhazov) TUD (T. Kröll?) Edinburgh ( P. Woods?) GSI (D. Savran)

Прецизионные измерения масс (и времен жизни) ядер (эксперименты ILIMA и MATS) Цели работы: Тесты ядерных моделей, получение данных для астрофизики (для расчетов r- и rp- процессов), более точная проверка унитарности матрицы CKM Mass measurements in the storage ring (ILIMA) Schottky mass spectrometry ПИЯФ ILIMA (NESR) детекторы распада MATS (ПИЯФ): измерение масс ядер в ловушках Пеннинга