Ukrainian Synchronous Network of Small Internet Telescopes as Rapid Action Instrument for Transient Objects B.E. Zhilyaev 1,2, M.V. Andreev 2, Ya.O. Romanyuk.

Презентация:



Advertisements
Похожие презентации
GALAXIES IN THE FIELD OF THE GAMMA-RAY BURST GRB I.V. Sokolov, Yu.V. Baryshev, T.A. Fatkhullin Results (counts of galaxies, photometric red shifts,
Advertisements

© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Connecting to Remote Networks Using Packet Switching in WANs.
Effect of Structure Flexibility on Attitude Dynamics of Modernizated Microsatellite.
© 2003, Cisco Systems, Inc. All rights reserved. CSPFA Chapter 3 Cisco PIX Firewall Technology and Features.
How can we measure distances in open space. Distances in open space.
© 2006 Cisco Systems, Inc. All rights reserved. HIPS v Using CSA Analysis Generating Application Deployment Reports.
© 2006 Cisco Systems, Inc. All rights reserved. CVOICE v Configuring Voice Networks Configuring Dial Peers.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v Route Selection Using Policy Controls Using Multihomed BGP Networks.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Connecting to Remote Networks Understanding WAN Technologies.
Business Statistics 1-1 Chapter Two Describing Data: Frequency Distributions and Graphic Presentation GOALS When you have completed this chapter, you will.
The main goal of the project is to develop 3-D Local Positioning System (LPS) which allows locating mobile objects inside multi-floor building. Required.
HPC Pipelining Parallelism is achieved by starting to execute one instruction before the previous one is finished. The simplest kind overlaps the execution.
© 2005 Cisco Systems, Inc. All rights reserved. INTRO v Growing the Network Maximizing the Benefits of Switching.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Building a Simple Serial Network Understanding the OSI Model.
GALAXIES IN THE FIELD OF THE GAMMA-RAY BURST GRB I.V. Sokolov, Yu.V. Baryshev, T.A. Fatkhullin Results (counts of galaxies, photometric red shifts,
© 2006 Cisco Systems, Inc. All rights reserved.ONT v Describe Cisco VoIP Implementations Implementing Voice Support in an Enterprise Network.
>> Presentation scapacs401>> Page: 1 >> scapacs401 Modular System For Laser Processing Heads.
Using Information Technology Chapter 1 Introduction to Information Technology.
,, Work better in near space Advantage – find a global minimum in near space. Nelder-Mead base technique on Rosenbrock function. 1 min 40 sec to solve.
Optical study of GRBs in the SWIFT era SAO RAS & Collaboration (Spain, Turkey, Chile, Hawaii, Japan and India)
Транксрипт:

Ukrainian Synchronous Network of Small Internet Telescopes as Rapid Action Instrument for Transient Objects B.E. Zhilyaev 1,2, M.V. Andreev 2, Ya.O. Romanyuk 1, A.V. Sergeev 2, O.A. Svyatogorov 1, V.K. Tarady 2 1 Main Astronomical Observatory, NAS of Ukraine, 27 Akademika Zabolotnoho, Kyiv, Ukraine 2 International Center for Astronomical, Medical and Ecological Research, , Terskol Settlement, Elbrus region, Russia

Introduction UNIT 1. UNIT (The Ukrainian synchronous Network of small Internet Telescopes) is a system of automated telescopes that search for simultaneous optical activity of transient objects associated with variable stars, small bodies of the Solar system, Near-Earth objects (NEOs), gamma-ray bursts, etc. UNIT 2.Their instruments are sensitive down to M V ~ 18 and require an average of 60 seconds to obtain the first images of the transient objects after the alarm or GCN notice (slew speed up to 3˚/sec). Telescopes of UNIT are equipped with fast CCD cameras to study astrophysics on the timescales up to tens Hz. 3.UNIT 3.UNIT will be operating by the middle of 2008.

Some Features of the Network The philosophy of UNIT is to develop an instrument allowing to obtain observations through the Internet from a PC at any location. UNIT is primarily supposed for professional applications. It can also be employed for educational aims by students via a www gateway.

Instrumentation 1.UNIT consists of two observation complexes in Ukraine and Russia (Peak Terskol) complete by small Celestron robotic telescopes with aperture 11 and 14 inches. We will use the UBVR filter-set. 2.We will use frame-transfer CCDs as the detectors for UNIT. The cooled chips have imaging areas of 1024x1024 and 512x512 pixels with resulting dark current of 0.5 e-/pixel/s. For small windows it is possible to take 0.01 s exposures.

Data acquisition 1.The CCD software operates on Windows-based systems and gives complete control over the image capture functions. The data is transferred to a PC via a PCI bus. 2. The UNIT telescopes run under local operator control. Observer communicates with operator using the VoIP technology of real-time talk/call transmissions through data networks. He conducts voice & video conversation, using connected to the computer microphone, loud speaker and webcam. 3.He can also utilize the handwritten input for writing of instantaneous reports through data network too.

Performance Figure 1. Under average conditions, i.e. seeing of ~ 1 arcsec, 2 min exposure a detectable magnitude is around U ~ 21. It is possible to measure stars up to 18 mags with a 5% precision. Stars of around 12 mag can be measured with 1% precision with 10 sec exposure. Practical measurements on Peak Terskol (M. Andreev) fully coincide with theoretical estimations.

Fast photometry Figure 2. Under seeing of ~ 1 arcsec it is possible to carry out fast stellar photometry within 5-50 Hz for stars of magnitude with the precision of 10-20%. Practical measurements with the 11 inch Celestron at Peak Terskol (N. Karpov) proved that we could pick a detectable magnitude 17.5 with 2 sec exposure. It is close to the theoretical estimations.

Celestron. Focal reducer F/6.3. Cooling 22C below. Exposure = 2 sec. CCD APOGEE E. FOV = 24x24 arc min, 1.4x1.4'' per pixel. Pleiades

Exposure = 2 sec, S/N 14 for 15.2 mag; σ = 0.07 mag The limiting magnitude is of ~ 17.5 with a 1 sec and ~ 21 with a 10 min exposure in the white light NOTE: The limiting magnitude is calculated for a signal-to-noise ratio equal to unity

Some comparisons 1.TAROT TAROT 1.TAROT is an automatic, autonomous observatory. Telescope : D = 250 mm, F = 800 mm equipped by a CCD Marconi The limiting magnitude is of V ~ 17 with a 10 sec and V ~ 19 with a 1 min exposure. TAROT began observations of GRB detected by HETE on 09 Feb 2005, 26 seconds after the GCN notice. MASTER 2.Full automated Internet-telescope MASTER, Russia, Near Moscow, Alexander Krylov Observatory, Sternberg Astronomical Institute. Modified Richter-Slefogt Camera, D = 355 mm, D/F - 1:2.4, Flat FOV – 5x5 o. CCD-camera AP16E (4000x4000). On optical observations of GRB: GRB (GCN 2543) - 48 h after trigger time, OT limit 21.2 mag.

Comparison with ULTRACAM For comparison we present analogical results for the limiting magnitudes with ULTRACAM (at a signal-to-noise of 10) as a function of exposure time at the GHRIL focus of the 4.2-m William Herschel Telescope (WHT) on La Palma. Difference between both our calculations and practical measurements and of the ULTRACAM data is explained only by a geometrical factor – different diameters of telescopes – and equals about 4 magnitudes (15 / 11 mag for the 0.1 s time resolution and 13 / 9 mag for the 0.01 s one).

CCD Rolera-MGi & 14 inch telescope Celestron Некоторые задачи Классическая UBVR фотометрия до 18 зв. вел. Синхронная фотометрия с 2-мя отдаленными телескопами в диапазоне частот 5-50 Гц для звезд зв. вел. (техника совпадения отсчетов). Фликеринг переменных звезд зв. вел. (катаклизмические, новые, старые новые, etc.). Быстрая спектроскопия небесных тел до 10 зв. вел. с разрешающей силой при отношении сигнал/шум ~ 10 с временным разрешением ~ 1 сек.

CCD Rolera-MGi & 14 inch telescope Celestron Некоторые задачи Наблюдение послесвечений гамма вспышек в UBVR по алертам сети GCN (GRB Coordinates Network) в рамках международной кооперации. Прогноз: при времени готовности ~ 2 мин в среднем можно зарегистрировать послесвечение гамма вспышки с частотой одно событие в 4 месяца в диапазоне зв. вел. в предположении вероятности ясного неба = ¼.

CCD Rolera-MGi & 14 inch telescope Celestron Некоторые задачи Наблюдение событий гравитационного линзирования небесных тел (экзопланет, звезд, черных дыр и т.д.) в рамках международной кооперации в UBVR по алертам сети MPS (Microlensing Planet Search Project) и др.

POST SCRIPTUM В основе проекта должны лежать идеи высокой технологии, оригинальные методы наблюдений и обработки данных, know-how. Только такой подход обеспечит выживание проекта в условиях высокой конкуренции в мировом научном сообществе. Только такой подход обеспечит выживание проекта в условиях высокой конкуренции в мировом научном сообществе. Астропункт Сети: штатный прибор + Интернет + обученный оператор. Корреспондентов и участников Сети можно организовать в любой стране мира, в том числе на украинской станции в Антарктиде. Такого проекта нет нигде в мире. Астропункт Сети: штатный прибор + Интернет + обученный оператор. Корреспондентов и участников Сети можно организовать в любой стране мира, в том числе на украинской станции в Антарктиде. Такого проекта нет нигде в мире.

POST SCRIPTUM Два примера научных задач Сети (1) Синхронные наблюдения транзиентов Figure Left side: The light curves of NGC7331 taken synchronously at intervals of 10 ms with the Terskol 2-m (upper) and the Crimean 50-inch (lower) telescopes separated by a distance of about thousand kilometers from each other on Sept 19, 2004, 18:27:27.59 UT (start time) in the B band. Both curves are in relative units, the lower is shifted for convenience. The joint confidence probability of a burst is of percent. Right side: The same for the Seyfert galaxy NGC1068 on Sept 22, 2004, 00:30:00.19 UT (start time). The light curves are taken synchronously at intervals of 10 ms and rebinned to 0.5 s with the Terskol 2-m (upper) and the Crimean 50-inch (lower) telescopes, the B band. The flare event is defined by the joint confidence probability of percent.

Корональная сейсмология звезд (2) Высокочастотные колебания во вспышках звезд Нами установлен новый ранее неизвестный факт: колебания вспышки между состояниями оптически толстой и оптически тонкой плазмы в Бальмеровском континууме. Эти колебания недавно нашли теоретическое объяснение (Куприянова и др., 2004; Степанов и др., 2005). Колебания рассматриваются как быстрые магнитозвуковые колебания в магнитных корональных петлях звезды. Теория дает при этом возможность оценить характеристики корональных петель (температуру, электронную концентрацию, характерные размеры, локализацию вспышки), т.е. диагностировать корону звезды. Это открывает новые перспективы для изучения корон вспыхивающих звезд, корональной сейсмологии. Материалом для такого рода работ могут служить синхронные наблюдения вспыхивающих звезд в UBVR-системе на нескольких удаленных телескопах Сети с высоким временным разрешением. A flare on EVLac, Oct 15, 1996, U band High-frequency oscillations & the wavelet spectrum.