Операционные системы Операционные среды, системы и оболочки Учебный курс Операционные среды, системы и оболочки Лекция 4 Лекции читает доктор технических.

Презентация:



Advertisements
Похожие презентации
Технологии виртуализации Виртуализация - это отделение логического ресурса от физического. Виртуализация повышает эффективность использования физических.
Advertisements

Архитектура операционной системы. Ядро и вспомогательные модули операционной системы При функциональной декомпозиции ОС модули разделяются на две группы:
История создания ОС. Семейство ОС MS Windows.. Операционная система базовый комплекс компьютерных программ, обеспечивающий управление аппаратными средствами.
1. Теоретические основы операционных систем (планирование заданий и использования процессора, обеспечение программ средствами коммуникации и синхронизации,
Лекция 6 Понятие операционных систем Учебные вопросы: 1. Характеристики ОС 2. Свободные и проприетарные ОС.
Microsoft TechDays средство совместимости с унаследованными приложениями Семченко Павел
Разработка учебно-лабораторного стенда для проведения тестов на проникновение в типовую корпоративную локально- вычислительную сеть предприятия Научный.
1 Работа под управлением ОС Windows. 2 Темы для обсуждения 1. Что такое операционная система Что такое операционная система Понятие ОС Виды ОС 2. Операционная.
Учитель информатики Трашков О.Л.. Обработка информации в компьютере и управление всеми его устройствами осуществляется с помощью программ. Компьютер представляет.
Обзор операционных систем ВОУНБ им. М. Горького «Операционная система - это совокупность программ, обеспечивающих управление процессом обработки информации.
1 Программное обеспечение (ПО) или «софт» (software) По назначению Системное Прикладное Инструментальное По способу распространения Проприетарное Открытое.
Архитектура операционных систем Семестр 2, Лекция 1.
Архитектура операционных систем. Архитектура ОС Состав модулей (компонент) ОС Структура связей между отдельными модулями ОС Принципы взаимодействия модулей.
Учитель информатики Трашков О.Л.. Для оперативного обмена информацией и совместного использования общих ресурсов компьютеры объединяют в сеть. Ресурсами.
Раздел 3 Сетевые модели. Тема 3.1 Понятие сетевой модели. Архитектура сети определяет основные элементы сети, характеризует ее общую логическую организацию,
Информатика в школе Операционная система Программное обеспечение.
Операционная система z/VM Назначение z/VM Задачи, решаемые при помощи z/VM: тестирование новых системных приложений, которое нецелесообразно проводить.
1 Назначение операционных систем Автор проекта: Евтина М. Г. Петрова М. В. Трубицын Д.А. Худяков А. Ю.
Программное обеспечение компьютера. Компьютер без программного обеспечения и операционной системы – это бесполезный хлам, груда железа.
Операционная система. 1.Общее понятие операционных системОбщее понятие операционных систем 2.Классификация ОСКлассификация ОС 3.Обзор наиболее популярных.
Транксрипт:

Операционные системы Операционные среды, системы и оболочки Учебный курс Операционные среды, системы и оболочки Лекция 4 Лекции читает доктор технических наук, профессор Назаров Станислав Викторович

Операционные системы Множественные прикладные среды. Совместимость Совместимость – возможность операционной системы выполнять приложения, разработанные для других операционных систем. Виды совместимости: 1. На двоичном уровне (уровень исполняемой программы). 2. На уровне исходных текстов (уровень исходного модуля). Вид совместимости определяется: 1. Архитектурой центрального процессора. 2. Интерфейсом прикладного программирования (API). 3. Внутренней структурой исполняемого файла. 4. Наличием соответствующих компиляторов и библиотек. Способы достижения совместимости: 1. Эмуляция двоичного кода. 2. Трансляция библиотек. 3. Создание множественных прикладных сред различной архитектуры.

Операционные системы 3 Обычное приложение OS1 Приложение OS2 API OS2 Приложение OS3 API OS3 API OS1 Менеджеры ресурсов Базовые механизмы Машинно-независимые задачи Пользовательский режим Привилегированный режим Прикладная среда OS2Прикладная среда OS3

Операционные системы 4 API OS2 Менеджеры ресурсов Базовые механизмы Машинно-независимые задачи API OS1API OS3 Приложение OS1 Приложение OS2 Приложение OS3 Пользовательский режим Привилегированный режим

Операционные системы 5 МИКРОЯДРО Приложения Серверы ОС Приложение OS1 Приложение OS2 Приложение OS3 Привилегированный режим Прикладная программная среда OS3 Прикладная программная среда OS2 Прикладная программная среда OS1 Сетевой сервер Сервер безопасности Пользовательский режим

Операционные системы 6 Подсистемы среды Windows 2000 Приложения Win32 Приложения POSIX Приложения OS/2 Подсистема Win32 Подсистема POSIX Подсистема OS2 Интегральные подсистемы (службы сервера, рабочей станции и подсистема обеспечения безопасности) СИСТЕМНЫЙ ИНТЕРФЕЙС (NT DLL.DLL) Режим пользователя Режим ядра

Операционные системы Способы работы с программами разных операционных систем на одном компьютере Способ 1: многовариантная загрузка Это самый распространенный способ (до недавнего времени) решения проблемы, который использует подавляющее большинство пользователей. Жесткий диск компьютера разбивается на несколько разделов и на каждый из них устанавливается своя операционная система и программы для нее. Кроме того, настраивается менеджер многовариантной загрузки, позволяющий выбрать операционную систему при загрузке компьютера. При таком подходе невозможно одновременно работать с приложениями разных операционных систем и для смены операционной системы необходимо перезагрузить компьютер. Зато операционные системы и их приложения исполняются без потерь в скорости и надежности. Если операционные системы совместимы по типу файловой системы, то возможно создание общего раздела для обмена файлами между ними. Итоговые оценки по десятибалльной шкале: Одновременная работа: 0 Многоплатформенность: 5 Производительность: 10 Совместимость: 10

Операционные системы 8 Способ 2: эмуляция API операционной системы Обычно приложения работают в изолированном адресном пространстве и взаимодействуют с оборудованием при помощи API, предоставляемым операционной системой. Если две ОС совместимы по своим API (например, Windows 98 и Windows 2000), то приложения, разработанные для одной из них, будут работать и на другой. Если две операционные системы несовместимы по своим API (например, Windows 2000 и Linux), то существует способ перехватить обращения приложений к API и сымитировать поведение одной операционной системы средствами другой операционной системы. При таком подходе можно поставить одну операционную систему и работать одновременно как с ее приложениями, так и с приложениями другой операционной системы. Поскольку весь код приложения исполняется без эмуляции и лишь вызовы API эмулируются, потеря в производительности незначительная. Но из-за того что многие приложения используют недокументированные функции API или обращаются к операционной системе в обход API, даже хорошие эмуляторы API имеют проблемы совместимости. Итоговые оценки по десятибалльной шкале: Одновременная работа: 9 Многоплатформенность: 0 Производительность: 9 Совместимость: 3

Операционные системы 9 Способ 3: полная или частичная эмуляция Проекты, выполненные по технологии полной эмуляции работают как интерпретаторы. Они последовательно выбирают код гостевой операционной системы и эмулируют поведение каждой отдельно взятой инструкции. Поскольку при этом полностью эмулируется поведение как процессора, так и всех внешних устройств виртуального Intel x86 компьютера, то существует возможность запускать эмулятор на компьютерах с совершенно другой архитектурой. Скорость работы гостевых приложений может упасть в раз, что означает практическую невозможность нормальной работы с гостевой операционной системой внутри эмулятора. Поэтому полная эмуляция используется редко (низкоуровневых отладчиков для исследования и трассировки операционных систем). Виртуальная машина эмулирует реальное аппаратное обеспечение, что позволяет использовать в качестве гостевых обычные, немодифицированные операционные системы, а команды, требующие себе особых привилегий, отрабатываются средствами VMM. Итоговые оценки по десятибалльной шкале: Одновременная работа: 10 Многоплатформенность: 9 Производительность: 2 Совместимость: 9

Операционные системы 10 Способ 4: виртуальная машина эмулирует реальное аппаратное обеспечение (квазиэмуляция) Существует большое количество инструкций, которые будут нормально испо- лняться в режиме нескольких операционных систем, и некоторое небольшое коли- чество инструкций, которые должны эмулироваться. Технология квазиэмуляции заключается в том, чтобы обнаружить и сымитировать поведение второго множес- тва инструкций и исполнять инструкции первого множества без эмуляции. Виртуальная машина эмулирует реальное аппаратное обеспечение, что позво- ляет использовать в качестве гостевых обычные, немодифицированные операци- онные системы, а команды, требующие себе особых привилегий, отрабатываются средствами VMM. В этом случае обеспечивается основных функций процессора и остальных главных компонентов компьютера. Идея естественной виртуализа- ции: поверх аппаратного уровня (физический сервер) располагается уровень мони- тора виртуальных машин VMM (гипервизор). Гипервизор полностью эмулирует компьютер, и способен поддерживать выполнение более чем одной операционной системы. На VMM выполняются так называемые гостевые операционные системы (guest OS) виртуальных машин, непосредственно поддерживающие работу приложений. Итоговые оценки по десятибалльной шкале: Одновременная работа: 10 Многоплатформенность: 5 Производительность: 8 Совместимость: 8

Операционные системы 11 Технологии виртуализации Виртуали- зация Virtually - фактически как, практически как, в сущности, поистине Virtually - фактически как, практически как, в сущности, поистине. Примеры: Примеры: – ФАКТИЧЕСКИ КАК работать за консолью удаленного компьютера. Telnet сеанс – ФАКТИЧЕСКИ КАК работать за консолью удаленного компьютера. Сетевой диск – ПРАКТИЧЕСКИ КАК обычный логический диск. Виртуальная память – ПОИСТИНЕ как большая оперативная память. Виртуализация - это отделение логического ресурса от физического. Виртуализация повышает эффективность использования физических ресурсов, обеспечивает высокую гибкость их использования и упрощает управление изменениями 19/24

Операционные системы 12 В качестве примера современного классического решения Type 1 hypervisor можно назвать VMware ESX Server; по существу это еще одна операционная система, действующая непосредственно на аппаратной платформе x86 в чистом виде. Гостевыми операционными системами, работающими на ESX Server, могут быть Linux, Windows, FreeBSD, NetWare и Solaris. Как самостоятельная операционная система, VMware ESX Server интерпретирует аппаратную платформу в качестве пула логических ресурсов и динамически перераспределяет его между гостевыми операционными системами

Операционные системы 13 Решение Type 2 hypervisor отличается тем, что гипервизор работает поверх операционной среды, так называемого «хоста». Типичными представителями этого направления виртуализации являются VMware Server и Microsoft Virtual Server. К примеру, Microsoft Virtual Server 2005 устанавливается как приложение на операционную систему Windows 2003 Server, выполняющую функцию «хоста». Таким образом создается виртуализационный уровень, обеспечивающий доступ к физическим ресурсам. Virtual Server 2005 доступен в двух версиях: Standard Edition и Enterprise Edition. Хостом для сервера VMware GSX Server могут быть операционные системы Windows 2000, Windows 2003 или Linux.

Операционные системы Виртуализация от Microsoft

Операционные системы 15 Виртуализация приложений

Операционные системы 16

Операционные системы 17 Виртуализация Windows Server Масштабируемость и производительность Поддержка 64-разрядных серверов и гостевых ОС Поддержка SMPдля гостевых систем Надежность и защита Минимальный объем доверенной базы кода Решение Windows Большая гибкость и управляемость Динамическое добавление виртуальных ресурсов (памяти, процессоров, сетевых адаптеров) Динамический перенос ОС и приложений Новый интерфейс пользователя и интеграция с SCVMM ВМ 1 «родительская» «родительская» ВМ2«дочерняя»ВМ2«дочерняя» ВМ 3 «дочерняя» ОборудованиеОборудование Windows Server 2003 Virtual Server 2005 R2 ВМ 2 ВМ 3 21/24

Операционные системы 18 Архитектура. Virtual Machine Monitor (VMM) ЦП вынужден переключаться между процессами базовой ОС и гостевой ОС VMM переключает контекст между этими процессами Компьютер работает в контексте хоста либо VMM На одном ЦП может работать только одна ОС Сжатие кода нулевого кольца (ring 0) гостевой ОС Базовая ОС ЯдроVMM Оборудование Гостевые приложения Гостевая ОС Виртуальное оборудование Гостевые приложения Гостевая ОС Виртуальное оборудование Гостевые приложения Гостевая ОС Виртуальное оборудование

Операционные системы 19 Виртуализация ЦП. Проблемы При прямом доступе гостевая ОС будет работать быстро! (99%) Когда требуется выполнить привилегированную операцию, срабатывает ловушка, и VMM обрабатывает эту операцию в режиме ядра. Проблема: полная виртуализация платформы x86 таким способом невозможна, так как некоторые инструкции ЦП для режима ядра, выполняющие чтение, разрешены не только в нулевом кольце Возможные решения: a)Перекомпилировать ОС и приложения, избегая этих 20 инструкций, т.е. исключить 20 «проблемных» инструкций. b)Воспользоваться исполнением с трансляцией двоичного кода ( модифи- кация кода «на лету» во время выполнения на хосте). c)Установить в гостевой системе VM Additions, что позволит модифицировать код в памяти VM. d)Использовать аппаратную поддержку виртуализации (перехват инструкций в особом кольце -1).

Операционные системы 20 Решения 1. Преобразование двоичного кода Трансляция инструкций гостевой операционной системы в инструкции базовой ОС. Всегда возможна, но работает очень медленно. 2. VM Additions Модифицирует dll-код в памяти VM (невозможно в 64-разрядных версиях Vista и Longhorn). VM Additions поддерживают синхронизацию времени, «пульс», завершение работы, оптимизированный SCSI-диск, лучшие драйверы мыши и видео. 3. Аппаратная виртуализация ЦП с поддержкой технологий Intel VT или AMD Virtualization. ЦП решает проблемы, отслеживая параметры каждой VM (фактически, это «кольцо 1).

Операционные системы 21 Гостевая система (VM) Win2003 или WinXP Ядро VMM.sys Кольцо 0 Оборудование Кольцо 1 Кольцо 3 Windows в VM VM Additions Гостевые приложения Кольцо 3 Служба Virtual Server IIS Веб-сайт Виртуальное оборудование Базовая система Кольцо 1

Операционные системы 22 Версии VM Additions СборкаВыпускПримечание 10.21В составе Virtual PC 5.2(дано название – Virtual PC Additions) 13.40В составе Virtual PC (отдельная загрузка)Поддерживает Win XP SP В составе VS В составе Virtual PC 2004 SP В составе VS2005 SP1 beta (отдельная загрузка)Поддерживает Win2003 SP В составе VS2005 R2Поддерживает Win2003 R2 и Vista (-build 5270) В составе VS2005 R2 SP1 beta (отдельная загрузка)Поддерживает Vista B2 (-build 5384) и Longhorn (отдельная загрузка)Поддерживает Vista RC В составе VS2005 R2 SP1 beta2Поддерживает Vista RTM В составе Virtual PC 2007 beta В составе Virtual PC 2007Загрузка – по адресу

Операционные системы 23 Linux VM Additions Добавляется поддержка: –Синхронизации времени –«Пульса» –Завершения работы –SCSI-дисков –Драйвер мыши и видео –Поддержки прямого исполнения кода нет! Дистрибутивы (9x): –Red Hat 7.3/9.0, Enterprise 2.1/3/4 –SuSE Linux 9.2/9.3/10.0, Enterprise Server 9 В выпуске VS 2005 R2 SP1 поддерживаются гостевые ОС : Red Hat Enterprise Linux 2.1 (update 7), Red Hat Enterprise Linux 3.0 (update 8), Red Hat Enterprise Linux 4.0 (update 4), Red Hat Enterprise Linux 5.0, SuSE Linux Enterprise Server 9.0, SuSE Linux Enterprise Server 10.0, Red Hat Linux 9.0, SuSE Linux 9.3, SuSE Linux 10.0, SuSE Linux 10.1, SuSE Linux 10.2.

Операционные системы 24 Win2003 или WinXP Ядро VMM.sys Кольцо 0 Оборудование Базовая ОСГостевая система ( VM ) Кольцо 1 Кольцо 3 Windows в VM VM Additions Гостевые приложения Кольцо 3 Служба Virtual Server IIS Веб-сайт Виртуальное оборудование ЦП Кольцо "-1" Архитектура виртуализации с аппаратной поддержкой

Операционные системы 25 Виртуализация с аппаратной поддержкой (Intel VT или AMD Virtualization) Поддерживается в: Virtual PC 2007 Virtual Server 2005 R2 SP1 Windows Virtualization (обязательно) Необходимо включить в BIOS и в параметрах Virtual PC 2007 Скорость работы гостевых ОС Windows не повышается Последние версии VM Additions уже поддерживают прямой доступ к ЦП Установка Windows выполняется в 2-3 раза быстрее Гостевые ОС типа Linux и Netware работают быстрее

Операционные системы 26 Спецификации Virtual Server 2005 R2 Базовая система: VS2005 Standard Edition: до 4 ЦП (1- или 2-ядерные), VS2005 Enterprise Edition: до 32 ЦП (1- или 2-ядерные), ОЗУ: до 64 Гб Гостевая система: ЦП: до 1, ОЗУ: до 3,6 Гб, Сетевые адаптеры: до 4, (неограниченная пропускная способность). USB: нет, поддерживаются USB-клавиатура и USB-мышь, можно также подключить USB-устройство для чтения смарт-карт. Дополнительные возможности Server 2005 R2 SP1: Поддержка Intel VT и AMD Virtualization, Поддержка 64-х разрядных базовых систем: Win2003 и WinXP. Поддержка теневого копирования томов (Volume Shadow Copy, VSS), Интеграция с Active Directory средствами Service Connection Points, Поддержка Vista как гостевой ОС, Утилита для монтирования VHD, Емкость по умолчанию VHD Гб (ранее – 16 Гб), Исправление Virtual SCSI для гостевых ОС Linux 2.6.x, Кластеризация VM, Передача VM при ее сбое в пределах того же хоста, Общий SCSI- (iSCSI-) диск для гостевых систем.

Операционные системы 27 Virtual PC / Virtual Server 2005 R2 Win2003 или WinXP Ядро VMM.sys Кольцо 0 Оборудование Базовая система Гостевая система (VM ) Кольцо 1 Кольцо 3 Windows в VM VM Additions Гостевые приложения Кольцо 3 Служба Virtual Server IIS Веб-сайт Виртуальное оборудование Поставщик Windows Virtual Server Другие компоненты

Операционные системы 28 Windows Virtualization Поддержка виртуализации для Windows Server Windows Hypervisor (Гипервизор), кодовое имя - "Viridian: Поддержка виртуализации для Windows Server Windows Hypervisor (Гипервизор), кодовое имя - "Viridian: «Тонкий» (~160 Кб) программный уровень, «внутренняя базовая ОС», Родительский раздел – управляет дочерними разделами, Дочерний раздел включает любое число ОС, управляемых родительским разделом. Стек виртуализации: Стек виртуализации: Работает в корневом (= родительском) разделе, Обеспечивает виртуализацию устройств, WMI-интерфейс для управления Провайдеры служб виртуализации (Virtualization Service Providers, VSPs) Провайдеры служб виртуализации (Virtualization Service Providers, VSPs) Архитектура совместного использования оборудования, В гостевой ОС устанавливаются драйверы "viridian«. Windows Virtualization Windows Virtualization Server требует x64-совместимого оборудования, ЦП с поддержкой Intel VT или AMD-V Поддерживает: Поддерживает: 32- и 64-разрядные гостевые ОС; до 8 ЦП на VM; горячее добавление» ЦП, ОЗУ, сетевых адаптеров, дисков; > 32 Гб ОЗУ на VM; возможность переноса VM без отключения; т радиционную модель драйверов; использование существующих драйверов Windows; прежний же набор эмулируемого оборудования; Server Core в качестве родительской ОС

Операционные системы 29 Windows Virtualization Схемы VMM Оборудование Базовая ОС VMM Гостевая ОС 1 Гостевая ОС 2 Оборудование VMM (Hypervisor) Гостевая ОС 1 Гостевая ОС 2 Оборудование VMM Гостевая ОС 1 Гостевая ОС 2 Базовая ОС VMM типа 2 Примеры: - JVM -.NET CLR ПРимеры: - Virtual PC - Virtual Server Примеры: - Виртуализация - Windows ("Viridian") VMM типа 1 Hypervisor Гибридный VMM

Операционные системы 30 Windows Virtualization Windows (Core) Ядро Windows Hypervisor Кольцо 0 Оборудование Родительский раздел Дочерний раздел Кольцо 3 Гостевые приложения Кольцо "-1" Windows VMBus Enlightment Ядро VSPVSC Стек виртуализации Служба VM WMI Рабочий процесс VM Драйверы Поставщик Windows Win Virtualizaton Другие компоненты Virtual Service Provider (VSP) Virtual Storage Miniport (VSC) Windows Management Infrastructure (WMI)

Операционные системы 31 Windows Server Core Установлены только набор исполняемых файлов и библиотеки DLL Не установлен графический интерфейс пользователя Доступно для части серверных ролей Можно управлять с помощью удаленных средств Надежная основа 12/24

Операционные системы 32 Версии продуктов ПродуктВыпускБазовые системыГостевые системы ** Virtual PC 2004Октябрь 2003 Win2000 Pro SP4 Win XP Pro (Tablet, SP1) MS-DOS 6.22 * / OS/2 Win 95, 98, 98SE, ME * Win NT4 SP6a (workstation) * Win2000 Pro SP4 Win XP (Tablet, SP1) Virtual Server 2005Июль 2004 Win XP Pro Win2003 SBS Win2003 (SE, EE, Data) Win NT4 SP6a (server) * Win2000 Server Win2003 (SE, EE, Web) Virtual PC 2004 SP1Октябрь 2004 То же, что и для Virtual PC Win2003 SE То же, что и для Virtual PC Win XP SP2 Virtual Server 2005 R2Ноябрь 2005 То же, что и для Virtual Server Win XP Pro SP2 (non prod) + Win2003 (SP1, R2) + Win XP / Win2003 x64 То же, что и для Virtual Server Win XP Pro SP2 + Win2003 (SP1, R2) + Linux (9x) - Apr 2006 Virtual PC 2004 ExpressМарт 2006 То же, что и для Virtual PC 2004 SP1 + Поддерживает не более одной VM + в Vista Enterprise / только для участников программы Software Assurance Virtual PC февраля Поддержка ЦП с технологиями Intel VT и AMD Virtualization + Поддержка Vista (гостевые и хост-системы) Virtual Server 2005 R2 SP1 Март Поддержка виртуализации процессоров Intel VT и AMD Virtualization +Поддержка Volume Shadow Copy Service (для резервного копирования) Windows Virtualization Longhorn + < 180 дней Реализация Windows Hypervisor Новая модель виртуализации, требует аппаратной поддержки VT/Virtualization Кодовое имя "Viridian" * Жизненный цикл этих продуктов близок к завершению **На находится список из > 1200 (!) ОС, совместимых с Virtual PC и Virtual Server В статье KB см. список ОС, поддерживаемых Virtual Server 2005 R2

Операционные системы 33 Основные области применения : Тестирование программного обеспечения и средств разработки ( тестирование создаваемых приложений, тестирование конфигураций и настроек готового программного обеспечения, а также действий администраторов серверов и сети с целью проверки работоспособности той или иной конфигурации серверного ПО перед началом ввода его в реальную эксплуатацию. Хостинг унаследованных приложений. Зачастую наиболее удачные бизнес-приложения эксплуатируются десятилетиями, поэтому вполне может случиться так, что платформа, для которой они написаны, в компании уже практически не применяется из-за отсутствия нормальной технической поддержки со стороны производителей оборудования. Консолидация загрузки серверов. Идея консолидации загрузки серверов заключается в создании виртуальных машин с разными операционными системами и программным обеспечением, реализующими выполнение указанных задач, и в размещении одного и того же набора этих виртуальных машин на нескольких физических серверах. Благодаря этому число самих серверов можно уменьшить, да и выход из строя одного из серверов не будет столь критичен для компании, поскольку его нагрузку может взять на себя виртуальная машина на каком-либо другом сервере. Моделирование распределенных серверных приложений на одном физическом сервере. Данный способ применения серверных виртуальных машин предназначен для разработчиков, специалистов по тестированию и специалистов по внедрению приложений масштаба предприятия. С его помощью можно создавать распределенные приложения, тестировать их, а также моделировать реальные условия внедрения, используя для этой цели один-единственный компьютер, что позволяет сократить расходы на приобретение аппаратного обеспечения для разработки приложений.

Операционные системы 34 В 2006 году объемы продаж компании увеличились в 10 раз по сравнению с 2004 годом. Подразделение Parallels, входящее в SWSoft, разработало платформу для виртуального исполнения Windows OC на платформе Mac, которая входит в десятку лучших продуктов 2006 года и является наиболее продаваемым на Amazon. В России сегодня работает свыше 750 инженеров компании. SWsoft - это мировой лидер в области программного обеспечения для виртуализации серверов и автоматизации, которое помогает потре- бителям, бизнесменам и провайдерам услуг оптимизировать процесс ис- пользования технологии. Программное обеспечение компании поддержи- вает работу более серверов и рабочих станций по всему миру. Линейка продуктов компании SWsoft включает Virtuozzo - передовое решение для виртуализации операционных систем, Parallels - передовой продукт виртуализации рабочих станций и Plesk - ведущую панель управ- ления серверами. Компания основана в 1999 году, офисы расположены по всей территории Северной Америки, Европы и Азии Технология Virtuozzo

Операционные системы 35 В модели гипервизора имеется базовый слой (обычно это тонкий слой ядра Linux, представленный здесь гипервизором или стандартной ОС), который загружается непосредственно на чистый сервер. Для выделения оборудования и ресурсов виртуальным машинам требуется виртуализация всего аппаратного обеспечения на сервере. В следующем слое показаны все чипы, платы и другие устройства, которые необходимо виртуализировать, чтобы их можно было предоставлять виртуальным машинам. В самой виртуальной машине содержится полная копия операционной системы и, наконец, приложение или рабочая нагрузка. Аппаратная модель виртуализации (гипервизор)

Операционные системы 36 SWsoft Virtuozzo - это запатентованное решение по виртуализации ОС. Virtuozzo позволяет создавать изолированные виртуальные среды (VE) или контейнеры на одном физическом сервере и экземп-ляре ОС. По сравнению с другими технологиями виртуализации Virtuozzo обеспечивает наиболее высокий уровень плотности, произ- водительности и управляемости.виртуализации ОС Интеллектуальное разбиение на разделы - разделение сервера на сотни виртуальных сред, функционирующих как самостоятельные серверы. Абсолютная изоляция - гарантируется безопасность, полная изоляция функций, ошибок и производительности виртуальных сред. Динамическое выделение ресурсов - можно изменять ресурсы процес- сора, объем памяти, сетевых ресурсов, дискового пространства и под- системы ввода-вывода без перезагрузки. Миграция в реальном времени - функции обеспечения непрерывности бизнес-процесса, включая миграцию в реальном времени, гарантиру- ют доступность и восстановимость данных. Групповое управление - комплекс инструментов и шаблонов для авто- матизированного администрирования множеством виртуальных сред и серверов.

Операционные системы 37

Операционные системы 38 Виртуализация ОС заключается в создании виртуальных серверов на уровне операционной системы (ядра). Такой метод виртуализации предпо- лагает создание изолированных разделов, или виртуальных окружений, на одном физическом сервере и одной копии ОС, чтобы добиться максималь- но эффективного использования ресурсов оборудования, программ, центров обработки данных и возможностей управленческого персонала. Модель виртуализации ОС подверглась модернизации с целью дос- тижения более высокой производительности, управляемости и эффектив- ности. В основе находится стандартная главная операционная система, в случае с Virtuozzo это может быть Windows и Linux. Далее идет слой вир- туализации (Virtuozzo Layer) с внутренней файловой системой и слой аб- страгирования служб, которые обеспечивают изоляцию и безопасность ресурсов, выделенных для различных виртуальных окружений. Слой вир- туализации служит для того, чтобы виртуальное окружение появилось как автономный сервер. Наконец, в самом виртуальном окружении размещается приложение или рабочая нагрузка. Поддерживаемые архитектуры микропроцессоров: Virtuozzo для Linux: x86, ia64, AMD64, EM64T, Itanium; Virtuozzo для Windows: 32 и 64 бит Минимальные требования к серверу: не менее 1 ГБ памяти и 4 ГБ свободного дискового пространства. Чем больше производительность процессора и объем памяти сервера, тем больше виртуальных частных серверов и приложений он может поддерживать.

Операционные системы 39 В 2006 году немецкая компания InnoTek представила продукт VirtualBox для виртуализации десктопов с открытым исходным кодом, в разработке которого (за исключе- нием некоторых компонентов) может принять участие любой желающий Открытая платформа виртуализации VirtualBox

Операционные системы 40 Платформа VirtualBox представляет собой настольную систему виртуализации для Windows, Linux и Mac OS хостов, поддерживающую операционные системы Windows, Linux, OS/2 Warp, OpenBSD и FreeBSD в качестве гостевых.

Операционные системы 41

Операционные системы 42

Операционные системы 43

Операционные системы 44 При старте виртуальной машины VirtualBox обычно запускается три процесса, которые можно наблюдать в диспетчере задач в Windows- системах или системном мониторе Linux: 1. Графический интерфейс окна управления. 2. Еще один похожий процесс, запущенный с параметром startvm, который означает, что GUI будет работать в качестве оболочки для виртуальной машины. 3. Автоматически создаваемый сервисный процесс VBoxSVC, необходимый для того, чтобы отслеживать количество и статусы запущенных виртуальных машин (поскольку они могут быть запущены различными способами). Виртуальная машина с запущенной в ней гостевой системой инкапсулирует в себе необходимые детали реализации гостевой ОС и ведет себя по отношению к хостовой системе как обычное приложение. Преимущества и недостатки VirtualBox Эксперты считают, что у этой платформы виртуализации определенно есть будущее, поскольку она готова занять пустующую нишу в сфере настольных систем виртуализации как мощная, производительная, удобная и, главное, бесплатная платформа. Безусловным плюсом системы является ее кроссплатформенность и поддержка со стороны сообщества Open Source. Большой список поддерживаемых гостевых и хостовых операционных систем открывает широкие возможности по применению VirtualBox в контексте различных вариантов использования.

Операционные системы Тема 2. Процессы и потоки. Планирование и синхронизация 2.1. Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна 2.2. Мультипрограммирование. Формы многопрограммной работы 2.3. Управление процессами и потоками 2.4. Создание процессов и потоков. Модели процессов и потоков 2.5. Планирование процессов и потоков 2.6. Взаимодействие и синхронизация процессов и потоков 2.7. Аппаратно-программные средства поддержки мультипрограммирования

Операционные системы Литература Л1 c. 72 – 138; Л2 c. 195 – 240; Л4 c. 97 – 178; Л6 c. 303 – 312;

Операционные системы 2.1. Концепция процессов и потоков. Задания, процессы, потоки (нити), волокна Ресурсы системы Управляющие таблицы ОС Образ процесса Процесс 1 Процесс N Память Устройства Файлы Процессы Процесс 1 Процесс 3 Процесс 2 Процесс N Процессор Первичные таблицы процессов Таблицы памяти Таблицы ввода-вывода Таблицы файлов

Операционные системы Взаимосвязь между заданиями, процессами и потоками Процессы TTPT Задание Стек в режиме пользователя Потоки Таблица процесса Маркеры доступа Стеки потоков в режиме ядра T P

Операционные системы Задание (JOB) НазваниеОписание ЗаданиеНабор процессов с общими квотами и лимитами ПроцессКонтейнер для ресурсов и потоков ПотокИсполнение кода в процессе ВолокноОблегченный поток, полностью управляемый в пространстве пользователя Объекты Процесс 2Процесс N Процесс 1 Поток 2 Thread 2 Поток k Thread k Поток 1 Thread 1 Волокна (Fibers)

Операционные системы t Канальная программа Ввод - вывод t В ы ч и с л е н и я Канал Центральный процессор Команда запуска канала Сигнал завершения операции ввода-вывода t t 2.2. Мультипрограммирование. Формы многопрограммной работы Мультипрограммирование в системах пакетной обработки О п е р а ц и и в в о д а – в ы в о д а Контроллеры Центральный процессор В ы ч и с л е н и я

Операционные системы t t A 222 AB 3 B 1 T a =6T b =5 T a +T b =11 В ы ч и с л е н и я A 2 B 1 В в о д – в ы в о д t A 2 B 3 A 2 B 1 T a = 7 T b = 6 T a +T b = 8 В ы ч и с л е н и я t A 2 B 1 t A 1 B 1 В в о д – в ы в о д Готовность (ожидание процессора)