2. Структурно-функциональная организация клетки 1. Методы изучения клетки. 2 Клеточная теория. 3 Строение клетки. Органоиды и их функции. а) Двумембранные.

Презентация:



Advertisements
Похожие презентации
Органоиды – постоянные клеточные структуры, имеющие определенное строение, химический состав и выполняющие специфические функции.
Advertisements

Презентация к уроку по биологии (10 класс) на тему: Презентация Органоиды клетки 10 класс
Органоиды – постоянные клеточные структуры, имеющие определенное строение, химический состав и выполняющие специфические функции.
Тема презентации: ОСОБЕННОСТИ СТРОЕНИЯ КЛЕТКИ 10 класс.
Тема: Структура и функции клетки.. Клетка эукариотическая Клетка прокариотическая.
Цитоплазма Гиалоплазма Клеточная мембрана Клеточный центр Ядро Пластиды Ядрышко Эндоплазматическая сеть Цитоскелет Лизосомы Жгутики и реснички Митохондрии.
Тема 5 Строение животной клетки. Органоиды и части клетки Органоиды и части клетки (мембранные и немембранные компоненты). *Органоидами или органеллами.
Биология. 11 кл.. Что такое клетка? Клетка –это основная структурная, генетическая и функциональная единица всех живых существ. Клетка –это основная структурная,
Органоиды клетки Выполнила: ученица 10 класс Тугушева Катя Проверила: Бормотова В.Ю.
ЭУКАРИОТИЧЕСКАЯ КЛЕТКА. ЦИТОПЛАЗМА. Многообразие клеток.
Клетка Цитоплазматическая мембрана (оболочка) - это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Она состоит из двойного слоя.
Органоиды клетки. Органоидами (органеллами) называют постоянные компоненты клетки, выполняющие в ней конкретные функции и обеспечивающие осуществление.
Структура и функции Структура и функции клетки клетки Выполнили: учащиеся 10 «А» класса МБОУ СОШ 80 г. Владивостока Руководитель: Королева Л.П. учитель.
Органоиды клетки Подготовил ученик 9 класса Маркин Сергей.
Органоиды клетки Prezentacii.com. Органоидами (органеллами) называют постоянные компоненты клетки, выполняющие в ней конкретные функции и обеспечивающие.
Тема урока: Строение клетки. Процессы на уровне клетки. Цель урока: Систематизировать знания о клетке.
Эукариотическая клетка. Строение клетки Органоиды цитоплазмы.
Строение эукариотической клетки.. Многообразие клеток.
Клетка и её органоиды. Задачи урока: 1. Продолжить изучение клеточного уровня организации жизни; 2. Создать общее представление о строении эукариотической.
Клетка – элементарная единица жизни на Земле. Клетка является структурной и функциональной единицей живого. Для нее характерны все признаки живых организмов:
Транксрипт:

2. Структурно-функциональная организация клетки 1. Методы изучения клетки. 2 Клеточная теория. 3 Строение клетки. Органоиды и их функции. а) Двумембранные органеллы Б) Одномембранные органеллы В) Немембранные органеллы

Один из методов изучения клетки - микроскопирование. Современный световой микроскоп увеличивает объекты в 3000 раз и позволяет увидеть наиболее крупные органоиды клетки, наблюдать движение цитоплазмы, деление клетки. Изобретенный в 40-е гг. XX в. электронный микроскоп дает увеличение в десятки и сотни тысяч раз.. При помощи такого микроскопа удалось изучить строение органоидов клетки. Строение и состав органоидов клетки изучают с помощью метода центрифугирования.. Метод основан на том, что различные клеточные ор ганоиды имеют разную массу и плотность. Более плотные органоиды осаждаются в пробирке при низких скоростях центрифугирования, менее плотные - при высоких. Эти слои изучают отдельно. Широко используют метод культуры клеток и тканей, который состоит в том, что из одной или нескольких клеток на специальной питательной среде можно получить группу однотипных животных или растительных клеток и даже вырас тить целое растение.

Клеточная теория В гг. немецкие биологи М. Шлейден и Т. Шванн обобщили знания о клетке и сформулировали основное положение клеточной теории, сущность которой заключается в том, что все организмы, как растительные, так и живот ные, состоят из клеток. В 1859 г. Р. Вирхов описал процесс деления клетки и сформулировал одно из важнейших положений клеточной теории: "Всякая клетка происходит из другой клетки". Открытие российским ученым К. Бэром в 1826 г. яйцеклеток млекопитающих привело к выводу, что клетка лежит в основе развития многоклеточных организмов.

Современная клеточная теория включает следующие положения: 1) клетка - единица строения и развития всех организмов; 2) клетки организмов разных царств живой природы сходны по строению, химическому составу, обмену веществ, основным проявлениям жизнедеятельности; 3) новые клетки образуются в результате деления материнской клетки; 4) в многоклеточном организме клетки образуют ткани; 5) из тканей состоят органы.

Органеллы клетки и их функции В клетке различают три основные части: плазматическую мембрану, ядро и цитоплазму (рис 1). Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. На рисунке 2 вы видите: мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны. Основная функция плазматической мембраны транспортная. Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена. Важное свойство мембраны - избирательная проницаемость

строение клетки.

строение клетки

Двумембранные органеллы. К двумебранным органеллам относятся пластиды и митохондрии и ядро Главная функция ядра - хранение и передача наследственной информации - связана с хромосомами. Каждый вид организма имеет свой набор хромосом: определенное их число, форму и размеры. Все клетки тела, кроме половых, называются соматическими (от греч. сома - тело). Клетки организма одного вида содержат одинаковый набор хромосом. Например, у человека в каждой клетке тела содержится 46 хромосом Соматические клетки, как правило, имеют двойной набор хромосом. Он называется диплоидным и обозначается 2n. Так, у человека 23 пары хромосом, то есть 2n = 46. В половых клетках содержится в два раза меньше хромосом. Это одинарный, или гаплоидный, набор. У человека 1n = 23

Пластиды.характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хло-ропласты, хромопласты и лейкопласты. Все типы пластид генетически родственны друг другу, и одни их виды могут превращаться в другие: Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента хлорофилла. Хлоропласты ограничены двумя мембранами наружной и внутренней (рис. 1.8).

Рис Схема строения хлоропласта: I наружная мембрана; 2 рибосомы; 3 Наружная мембрана отграничивает внутреннюю среду хлоропласта строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа.

Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа. Внутренняя мембрана хлоропласта образует впячивания внутрь стромы тилакоиды

Именно в мембранах тила-коидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света. Хлоропласты в клетке осуществляют процесс фотосинтеза. Лейкопласты мелкие бесцветные пластиды различной формы Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ крахмала, реже жиров и белков. Хромопласты отличаются от других пластид своеобразной формой и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу.

Митохондрии неотъемлемые компоненты всех эукариоти-ческих клеток..\толщиной 0,5 мкм и длиной до 710 мкм. \ Митохондрии ограничены двумя мембранами наружной и внутренней (рис. 1.9). Наружная митохондриальная мембрана отделяет ее от гиало- плазмы. Внутренняя мембрана образует множество впячиваний внутрь митохондрий так называемых крист. На мембране крист или внутри нее располагаются ферменты, которые участвуют в кислородном дыхании

Схема строения митохондрии: а продольный разрез; 6 схема трехмерного строения; 1 внешняя мембрана; 2 матрикс; 3 межмембранное пространство; 4 гранула; 5 ДНК; 6 внутренняя мембрана; 7 рибосомы.

Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра. Митохондрии являются энергетической станцией клетки.

Одномембранные органеллы. В клетке синтезируется огромное количество различных веществ. Накопление этих веществ и перемещение их из одной части клетки в другую либо выведение за ее пределы происходит в системе замкнутых цитоплазматических мембран эндоплазматической сети, или эндоплазматическом ретикулуме, и комплексе Гольджи, составляющих транспортную систему клеток.

Эндоплазматический ретикулум (ЭПР ).. Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР.. Различают два вида ЭПР: шероховатый, содержащий на своей поверхности рибосомы и гладкий, мембраны которого рибосом не несут. Функции:разделяет цитоплазму клетки на изолированные отсеки, обеспечивая, тем самым пространствен-ное отграничение друг от друга множества параллельно идущих различных реакций. Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза

2. Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен. Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из про-стых сахаров, созревание белков, образование лизосом.

Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диа-метром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов,. Образование лизосом происходит в аппарате Гольджи,. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида. Различают: первичные вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями): Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки (например, замена хрящевой ткани кост-ной, исчезновение хвоста у головастика лягушек

. Реснички и жгутики. Образованы девятью сдвоенными микротрубочками, образующими стенку цилин-дра, покрытого мембраной; в его центре находятся две одиночные микротрубочки. Такая структура типа 9+2 характерна для ресничек и жгутиков почти всех эукариотических организмов, от простейших до человека. Реснички и жгутики укреплены в цитоплазме базальными тельцами, лежащими в основании этих органоидов. Каждое базальное тельце состоит из девяти троек микротрубочек, в его центре микротрубочек нет. 5. К одномембранным органоидам относятся так же и вакуоли.

Вакуоли крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает до 7090% объема клетки и может быть пронизана тяжами цитоплазмы (рис. 1.12).

Вакуоль в растительной клетке: 1 вакуоль; 2 цитопяаз-матические тяжи; 3 ядро; 4 хлоропласты.

Содержимое вакуолей клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Большинство из них являются продуктами метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты

Функции вакуолей следующие: Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через ее мембрану поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а следовательно, и на оболочку клетки. В результате в клетке развивается тургорное давление, В запасающих тканях растений вместо одной центральной часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества (жиры, белки). Сократительные (пульсирующие) вакуоли служат для осмотической регуляции, прежде всего, у пресноводных простейших, Сократительные вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.

Немембранные органеллы. Клеточный центр. В клетках большинства животных, а также некоторых грибов, водорослей, мхов и папоротников имеются центриоли. Расположены они обычно в центре клетки, что и определило их название (рис.1.13). Центриоли представляют собой полые цилиндры длиной не более 0,5 мкм. Они располагаются парами перпендикулярно одна к другой (рис. 1.14). Каждая центриоль построена из девяти триплетов микротрубочек Основная функция центриолей организация микротрубочек веретена деления клетки.

Рибосомы это мельчайшие сферические гранулы диаметром 1535 нм, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов, в том числе про-кариотических. В отличие от других органелл цитоплазмы (пластид, митохондрий, клеточного центра и др.) рибосомы представлены в клетке огромным числом: за клеточный цикл их образуется около 10 млн. штук. В состав рибосом входит множество молекул различных белков и несколько молекул РНК. Полная работающая рибосома состоит из двух неравных субъединиц (рис. 1.15).. При объединении в рибосому малая субъединица ложится одним концом на один из выступов большой субъединицы. В состав малой субъединицы входит одна молекула РНК, в состав большой три

ПСхема строения рибосомы: 1 малая субъединица; 2 иРНК; 3 тРИК; 4 аминокислота; 5 большая субьединица; б мембрана эндоплазматической сети; 7 синтезируемая полипептид- ная цепь.

2. Цитоскелет. Одной из отличительных особенностей эукариотической клетки является наличие в ее ци-топлазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета, тесно связанные с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Цитоскелет образован микротрубочками и микрофиламентами, определяет форму клетки, участвует в ее движениях, в делении и перемещениях самой клетки, во внутриклеточном транспорте органоидов и отдельных соединений

. По возможностям географического распрост­ранения Homo sapiens является панойкуменным видом, т. е способен обитать на различных участках и в различных кли­матических зонах планеты, хотя как биологический вид чело­век может обитать только в пределах суши экваториального пояса (в тропиках и субтропиках) до высоты 33,5 км над уровнем моря. Однако за пределами первоначального ареала он может выжить не благодаря физиологической адап­тации, а с помощью специальных защитных устройств и при­способлений (отапливаемые жилища, одежда, кислородные приборы и т. д Выход человека из-под контроля среды начался примерно 10 тыс. лет назад, когда впервые появились признаки сельско­го хозяйства. Именно тогда люди перестали зависеть от ресурс­ной кормовой базы и начался постепенный рост их численнос­ти, больший, чем предусмотрено законами биосферы.

Что по нашим расчетам и получается: 1690 – 614 млн 1800-й млн И сразу за 100 лет скачок почти на миллиард млрд 535 млн 1970 – 3 млрд (реально считается где-то 3,7 млрд) 2000 – 5 млрд 375 млн й - 6 млрд 716 млн 2009-й - 6 млрд 936 млн 2012-й - 7 млрд 678 млн 2020-й – 10 млрд 750 млн 2025-й – 14 млрд й -21 млрд й – 43 млрд й – 215 млрд й – схлопывание и все дальше Земля не выдержит столько людей