Российский государственный университет физической культуры, спорта и туризма Кафедра естественно-научных дисциплин и информационных технологий 2007 г.

Презентация:



Advertisements
Похожие презентации
История развития вычислительной техники.
Advertisements

История развития вычислительной техники © Ягодкина Ю.В., ГОУ СОШ 1028, 2010.
Российский государственный университет физической культуры, спорта и туризма Кафедра естественно-научных дисциплин и информационных технологий 2007 г.
Поколения ЭВМ © Ягодкина Ю.В., ГОУ СОШ 1028, 2010.
Тема урока: Этапы развития вычислительной техники: 1. Ручной этап 2. Механический 3. Электронный.
История развития ЭВМ. Предыстория Около 500 г. н.э. Изобретение счётов (абака) устройства, состоящего из набора костяшек, нанизанных на стержни. Около.
ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ. Абак, первое счетное устройство, был известен еще задолго до нашей эры. Русский абак счеты появились приблизительно.
Первые средства счета Кости с зарубками («вестоницкая кость», Чехия, 30 тыс. лет до н.э) Узелковое письмо (Южная Америка, VII век н.э.) узлы с вплетенными.
Кто может назвать самое древнее устройство, используемое для вычислений?
Раздел: Компьютер как средство обработки информации Тема: История развития вычислительной техники. Поколения электронно- вычислительных машин.
Поколения ЭВМ Появление ЭВМ диктовалось прежде всего потребностями физических и инженерных наук. Успехи этих наук в свою очередь приводили к совершенствованию.
История счетных машин часть Первые средства счета Первые счетные машины Первые компьютеры Принципы Джона фон Неймана Архитектура фон Неймана Поколения.
Урок по теме : Презентацию подготовил: Ученик 9 «Б» класса МОУ средней школы 18 Носиков Андрей г. Кемерово 2010год.
История развития вычислительной техники Первые инструменты для счета Первые ЭВМ Поколения ЭВМ Компьютер будущего.
История ЭВМ История ЭВМ Автор: Николаева О. А. МОУ СОШ 4 п. Хинганск.
История развития вычислительной техники. История вычислительной техники началась тогда, когда появилось понятие числа. Во многих языках слово «цифра»
ИНФОРМАТИКА ИЗ ИСТОРИИ ИНФОРМАТИКИ. ИСТОРИЯ ИНФОРМАТИКИ Наши древние предки считали на пальцах Со II века до н.э. использовали АБАКУ В 500 г.н.э. в Китае.
Развитие вычислительной техники ГБОУ ЦО 354 Учитель информатики Попельнюк Г.Н.
Краткая история развития средств вычислительной техники.
1.Ручной этап (5 тысяч лет назад) Древние люди считали на пальцах рук. Для более сложных вычислений использовали абак- древние счеты. В России счеты появились.
Транксрипт:

Российский государственный университет физической культуры, спорта и туризма Кафедра естественно-научных дисциплин и информационных технологий 2007 г. Введение в информатику Тема лекции: Вопрос 1. Эволюция вычислительных машин

Слайд. 2 Этапы развития ВМ Вопрос 1. Эволюция ВМ 1. Ручной до 17 в. н.э. (Абак, русские счеты, счет.палочки Непера) 2. Механический до 90-х г. 19 в. н.э. (Суммирующая машина Паскаля, Арифмометр) 3. Электромеханический до 40-х г. 20 в. н.э. (Табулятор, Z-3, Mark-1) 4. Электронный до настоящего времени. (ENIAK, IBM, Macintosh)

Слайд Ручной этап развития ВМ до 17 в. н.э. 2. Пальциевый счет. Шумерская цивилизация г. до н.э. 3. Группировка и перекладываение предметов 4. Абак ( аbacus- лат.доска )- камешки в углублениях досок (Счет по разрядам, наличие позиционной системы счисления). Древня Греция, Рим. IV в. до н.э. Китай – Суаньпань (VI в.н.э.), Япония – Соробан (XVI в.н.э.), 5. Русские счеты. Спицы.Костяшки. (16 в. н.э. Купцы Строгановы) г. Дж.Непер Логарифм. Счетные палочки 1. Насечки на костях. Около 50 тыс. лет до н.э. Унарный счет.

Слайд Механический до 90-х г. 19 в. н.э г Сумматор. Блез Паскаль, франц. математик, физик, философ (сложение, вычитание над 6-ти разрядными числами, использовал 10- тичную С.С.)

Слайд Механический до 90-х г. 19 в. н.э. (продолжение) 1673 г Арифмометр. Вильгельм Лейбница, немецкий ученый (сложение, вычитание, умножение,деление над десятичными числами до 12 разрядов. Использовал 10-ую С.С.) Проф. счетчик. Баллистические таблицы. Арифмометр Феликс в России до 1970 г г. Зубчатое колесо Однера (Россия)

Слайд Механический до 90-х г. 19 в. н.э. (продолжение) 1801 г Ткацкий станок. Жозеф Жаккар, фрац. изобретатель (Ткацкий станок, читающий инструкции с бумажных карточек. ПЕРФОКАРТА

Слайд Механический до 90-х г. 19 в. н.э. (продолжение) 1834 г Аналитическая машина (проект). Чарльз Бэббидж, анг. математик (Арифмометр с программным управлением, с памятью и ариф. Устр. Использовал 10-ую С.С.) Б Управ-я Мельница Склад Б В/В Ада Лавлейс Байрон (Арифметические процедуры для вычислений на АМ)

Слайд Электромеханический до 40-х г. 20 в. н.э г Табулятор (на основе простейших электромеханических реле). Герман Холерит, США (Реализовал идеи аналитической машины, использовал 10-ую с.с.) Читала и сортировала данные, записанные на перфокарту. XI перепись населения США.

Слайд Электромеханический до 40-х г. 20 в. н.э. (продолжение) 1924 г IBM – International Business Machines. CTR (Computer Tabulating Recording, Холлерит) –> IBM (коммивояжер CТR Томас Уотсон-старший) Руководитель IBM c 1924 по 1952 гг Руководитель IBM c 1952 по 1971 гг г. – посол США в СССР 1935 г – Первая электрическая печатная машинка гг – Выполнение оборонных заказов США гг – совместно с учеными Гарвардского университета велись работы по созданию первых ЭВМ

Слайд Электромеханический до 40-х г. 20 в. н.э. (продолжение) гг Серия ВТ Z1,Z2,Z3,Z4 – Конрад Цузе (немецкий инженер) –> - на основе электромеханических реле, управлялись программой на перфоленте Z3 – первая программно- управляемая универсальная ВТ, использовала двоичную с.с., 2600 эмр, 8 команд, извлечение кв.корня

Слайд Электромеханический до 40-х г. 20 в. н.э. (продолжение) гг Маrк-1 – Mаrк-2 Говард Эйкен (амер. ученый) –> - на основе электромеханических реле, управлялись программой на перфоленте, вес – 5 тонн, основу составляло механическое АУ, приводимое в движение электромотром 5 л.с. 800 км. проводов Mаrк-2 – использовала 10-ую с.с., эмр, сложение – 0,2 с., умножение – 0,7 с.

Слайд Электронный этап развития ВМ (с 40-х г. 20 в. н.э. до настоящего времени). Поколения ЭВМ по элементной базе 1. Первое поколение. Э.Б. – электронные лампы (1940-е – 1950-е годы) 2. Второе поколение. Э.Б. – транзисторы (1950-е – 1960-е годы) 3. Третье поколение. Э.Б. – интегральные схемы (1960-е – 1970-е годы) 4. Четвертое поколение. Э.Б. – большие интегральные схемы /БИС/ (1970-е – 1980-е годы). 5. Пятое поколение. Э.Б. – сверхбольшие интегральные схемы /СБИС/ (1990-е – по настоящее время).

Слайд Электронный этап развития ВМ (продолжение) 1. Первое поколение. Э.Б. – электронные лампы (1940-е – 1950-е годы) Около 10 тыс. оп/с, память до 10 Кб., монопольный режим использования, потребляли большую мощность, занимали помещения до ста кв.м., весили 10 и более тонн, использовались в научных расчетах, в военной промышленности. Программирование в машинных кодах. ENIAC, UNIVAC, IBM 701, МЭСМ, БЭСМ г. ABC (Атанасов-Бери-Компьютер) Решение дифференциальных уравнений в двоичной с.с. (слож.,вычит.) Джон Эккерт Джон Мочли 1946 г. ENIAC- Electronic Numerical Integrator and computer эл.л. 30 м х 4 м. х 6 м. 35 тонн, 140 Квт. 10 дес. разрядов, В 1000 раз быстрее Маrk-1 Т.ч. 100 КГц, оп/с 1951 г. МЭСМ эл.л. 60 кв.м оп/с двоичная c.с. С.А. Лебедев

Слайд г Аналитическая машина (проект). Джон фон Нейман, амер. математик (Доклад Общие принципы функционирования ЭВМ) Архитектура ЭВМ Б Управ-я АЛУ Память Б В/В 4. Электронный этап развития ВМ (продолжение) 1. Принцип хранимой программы 2. Принцип автоматизма 3. Принцип адресации 4. Принцип переадресации Процессор

Слайд Второе поколение. Э.Б. – транзисторы (1950-е – 1960-е годы) (1948) Около 1 млн. оп/с, память до 100 Кб., пакетная обработка данных, уменьшились габариты, потребляемая мощность, использовались для решения планово-экономических, статистических управленческих производственных задач. Fortran (1957). IBM 7090, ATLAS, БЭСМ-4, 6, Минск 32, Урал Электронный этап развития ВМ (продолжение) IBM транзисторов оп/с БЭСМ кв.м транзисторов оп/с ОЗУ 32 Кб

Слайд Электронный этап развития ВМ (продолжение) 3. Третье поколение. Э.Б. – интегральные схемы (1960-е – 1970-е годы) (1958) До транзисторов. Около 10 млн. оп/с. Появление СУБД. Обработка символьной информации. IBM 360, PDP-8, ЕС ЭВМ, СМ ЭВМ. (Копирование IBM, PDP) IBM 360 8,16,32-разрядные 8-ми битный байт ОЗУ 64 Кб Перфокарта, жесткий диск До оп/c Начало Mainframe ЕС 1020 (большие м.) оп/с Площадь 100 кв.м. Клон IBM СМ 4 ЭВМ (малые м.). 16-ти раз-ая оп/с, ОЗУ 124 Кб

Слайд Электронный этап развития ВМ (продолжение) 4. Четвертое поколение. Э.Б. – большие интегральные схемы /БИС/ (1970-е – 1980-е годы). Появление персональных компьютеров. Десятки, сотни тысяч транзисторов, Около 100 млн. оп/с,. Многопроцессорные комплексы. Обработка графической информации. Altair-8800, Apple-I, IBM PС, Cray, Эльбрус г Apple 1. Стив Джобс, Стефан Возняк 1 МГц, ОЗУ 4 Кб 1975 г., Эд Робертс, MITS, Intel 8080, ОЗУ 256 Байт Принцип открытой архитектуры 1975 г., Эд Робертс, MITS, Intel 8080, ОЗУ 256 Байт Принцип открытой архитектуры 1981 г IBM PC. Intel 8088 Micro Soft Билл Гейтс, Пол Ален – MS DOS 4,77 МГц, ОЗУ 1 Мб.,

Слайд Электронный этап развития ВМ (продолжение) 5. Пятое поколение. Э.Б. – сверхбольшие интегральные схемы /СБИС/ (1990-е – по настоящее время). Системы искусственного интеллекта. Миллионы транзисторов, Свыше 1 млрд.. оп/с,. Многопроцессорные комплексы. Обработка мультимедийной информации. ООП. IBM Pentium 4, Apple Macintosh. Принцип искусственного интеллекта