18 Septembert 2007V.Kekelidze, V-high mult. conf1 Introduction Experimental tasks Basic Principles Simulation General view of MPD & the magnet Major Sub-Detectors:

Презентация:



Advertisements
Похожие презентации
27 March 2008V.Kekelidze, Seminar at INR1 Введение Физические задачи первого этапа Концептуальная схема установки «Баррельная» часть Торцевые части Организационные.
Advertisements

AFM-Raman and Tip Enhanced Raman studies of modern nanostructures Pavel Dorozhkin, Alexey Shchekin, Victor Bykov NT-MDT Co., Build. 167, Zelenograd Moscow,
Monitoring system of the LHCb electromagnetic calorimeter NEC2007, Varna, Bulgaria Ivan Korolko (ITEP Moscow)
Module 1, Part 1: Introduction and The VMP Slide 1 of 22 © WHO – EDM Validation Supplementary Training Modules on Good Manufacturing Practices.
А.В.Акимов, А.Ю.Антонов, А.В.Антошин, П.А.Бак, А.М.Барняков, М.Ф.Блинов, Ю.М.Боймельштейн, Д.Ю.Болховитянов, Ф.А.Еманов, А.Р.Фролов, Р.Х.Галимов, С.М.Гуров,
7/23/20151 Relativistic electron beam transport simulation models German Kurevlev.
ХИГГС-БОЗОН В ЭКСПЕРИМЕНТАХ ATLAS и CMS НА БАК В.А.Щегельский Семинар ОФВЭ и ОТФ 30 мая 2013.
Ionospheric model. Introduction Because of the complicated nature of the ionosphere, there have been numerous approaches for ionospheric modeling. In.
Albina Manapova ED There is great variety in the types of speakers that are available in the market today. However, the basic principles of sound.
Fractal A fractal is a mathematical set that has a fractal dimension that usually exceeds its topological dimension and may fall between the integers.
PERT/CPM PROJECT SCHEDULING Allocation of resources. Includes assigning the starting and completion dates to each part (or activity) in such a manner that.
Diffraction and Interference. Interference and Diffraction Distinguish Waves from Particles O The key to understanding why light behaves like waves is.
The main goal of the project is to develop 3-D Local Positioning System (LPS) which allows locating mobile objects inside multi-floor building. Required.
1 AIDA INRNE, Sofia, Bulgaria Radiation Sensors for GIF+ Assoc. prof. Plamen Iaydjiev – coordinator Group members: Prof. Ivan Vankov, assoc. prof. Liubomir.
© 2009 Avaya Inc. All rights reserved.1 Chapter Two, Voic Pro Components Module Two – Actions, Variables & Conditions.
© 2005 Cisco Systems, Inc. All rights reserved.INTRO v Building a Simple Ethernet Network Understanding How an Ethernet LAN Works.
The Pulse Generator for the Supersonic Flow Structure Control ГЕНЕРАТОР ИМПУЛЬСОВ ДЛЯ УПРАВЛЕНИЯ СТРУКТУРОЙ СВЕРХЗВУКОВОГО ПОТОКА Khristianovich Institute.
NMDB Kiel Meeting, 3-5/12/2008 On the possibility to use on-line one-minute NM data of NMDB network and available from Internet satellite CR data for.
Strings String theory is an active research framework in particle physics that attempts to reconcile quantum mechanics and general relativity. It is a.
Chap 8-1 Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc. Chapter 8 Estimation: Single Population Statistics for Business and Economics.
Транксрипт:

18 Septembert 2007V.Kekelidze, V-high mult. conf1 Introduction Experimental tasks Basic Principles Simulation General view of MPD & the magnet Major Sub-Detectors: Inner Tracker Tracker RPC (TOF) ZDC Summary MultiPurpose Detector NICA for NICA

18 Septembert 2007V.Kekelidze, V-high mult. conf2 Introduction NICA / MPD project has started to study of hot & dense strongly interacting QCD matter & search for possible manifestation of the mixed phase formation & critical endpoint in heavy ion collisions /proposed by A.N.Sisakian and A.S.Sorin / NICA / MPD is a leading LHE project in both – research program & development of basic facility in it is expected that this flagship project provides: - the frontier researches in heavy ion physics - attraction of young physicists & worldwide cooperation - development of new technologies (incl. nanotechnologies) - essential extra funds

18 Septembert 2007V.Kekelidze, V-high mult. conf3 The new JINR facility based on the upgraded Nuclotron – heavy Ion collider with max energy S NN = 9 GeV & mean luminosity of L=10 27 cm -2 s -1 (for U+U collision) These investigations are relevant to understanding of the evolution of the Early Universe and formation of the neutron stars and the physics of heavy ion collisions. It will allow to study in-medium properties of hadrons and nuclear matter equation of state including a search for possible manifestation of deconfiment and/or chiral symmetry restoration phase transition & QCD critical end-point in the energy region of S NN = 3-9 GeV

18 Septembert 2007V.Kekelidze, V-high mult. conf4 NICA complex allocation MPD

18 Septembert 2007V.Kekelidze, V-high mult. conf5 Event-to event fluctuation in hadron productions (multiplicity, Pt etc.) HBT correlations indicating the space-time size of the systems involving π, K, p, Λ (possible changes close to the de-confiment point) Directed & elliptic flows for various hadrons Multi-strange hyperon production: yield & spectra (the probes of nuclear media phases) The first stage of experimental tasks foresees to study the following effects (on energy & centrality scanning):

18 Septembert 2007V.Kekelidze, V-high mult. conf6 Possible indication on phase transition measurements of related yields for charged kaons & pions Some enhancement is indicated in the energy region around ~ Е лаб = 30 А ГэВ

18 Septembert 2007V.Kekelidze, V-high mult. conf7 Technical solutions should be as simple as possible Detailed simulation of expected parameters & corresponding cross-checks by available data The experiment should fulfill the major requirement: physical observables must be clearly distinguished from possible apparatus effects Basic principles of experimental approach

18 Septembert 2007V.Kekelidze, V-high mult. conf8 Basic principles of organization to approach At first approximation - all sub-detectors could be designed & constructed at JINR based on the existing expertise & infrastructure Major sub-detectors (tracker) have alternative design in order to provide possibility for collaborators to substitute/accomplish corresponding groups in future The first realistic draft should be ready by January 2008 The rough cost estimation should be done by that time as well

18 Septembert 2007V.Kekelidze, V-high mult. conf9 First stage of simulation (based on UrQMD & GEANT4 in the framework of MPD-Root shell) Au+Au collisions with total energy of GeV/n Central interaction within b: 0 – 3 fm Minimum bias within b: 0 – 15.8 fm Collision rate at at L=10 27 cm -2 s -1 : ~ 6 kHz

18 Septembert 2007V.Kekelidze, V-high mult. conf10 Collision region

18 Septembert 2007V.Kekelidze, V-high mult. conf11 Charged particle multiplicity central collision |η| 100 MeV/c ~ 450

18 Septembert 2007V.Kekelidze, V-high mult. conf12 Momentum spectrum all B=0 = 0.4 GeV/c

18 Septembert 2007V.Kekelidze, V-high mult. conf13 momentum spectra for various particles π+π+ π-π- K+K+ K-K GeV/c

18 Septembert 2007V.Kekelidze, V-high mult. conf14 MPD General View

18 Septembert 2007V.Kekelidze, V-high mult. conf15 Basic geometry (dimensions) preliminary Defined as a compromise between: -TOF requirement -tracker resolution -magnetic field formation limited by collider optics

18 Septembert 2007V.Kekelidze, V-high mult. conf16 Magnet superconducting solenoidal magnet magnetic field 0.5 T cryostat inner diameter (available for the detector) ~ 1.5 m colour step 0.5 Gauss (~1 pm) - good homogeneity

18 Septembert 2007V.Kekelidze, V-high mult. conf17 Inner Tracker (IT) - silicon strip detector Barrel Tracker (BT) - Straw or TPC pseudo-rapidity region from -1 to 1 End Cap Tracker (ECT) – Straw Chambers (to define reaction plane) Resistive Plate Chamber (RPC) (to measure Time of Flight) Electromagnetic Calorimeter (ECAL) Zero Degree Calorimeter (ZDC) (for centrality definition) Beam-Beam Counters (BBC) (to define centrality & interaction point) MPD major sub-detectors

18 Septembert 2007V.Kekelidze, V-high mult. conf18 Inner Tracker Complementary detector for track precise reconstruction in the region close to the interaction piont Cylindrical geometry (4 layers) covering the interaction region ~ 50 cm along the beam axis Possible contribution to the dE/dx measurement for charged particles

18 Septembert 2007V.Kekelidze, V-high mult. conf19 Longitudinal view of MPD SVT Detector module Carbon ladder Collider chamber Beams

18 Septembert 2007V.Kekelidze, V-high mult. conf20 Transverse view of MPD SVT Number of modules 357. Number of detectors 714. Number of electronic channels cm

18 Septembert 2007V.Kekelidze, V-high mult. conf21 Barrel & End Cap Trackers Straw detector (optional) BT major detector for charged particle track reconstruction and momentum measurement (P T component) to measure z-coordinate of the hit with acceptable occupancy -crossing straw geometry is implemented (hyperbolic shape as the whole) - each straw is segmented by 18 parts ECT the wheels with radial straws to define the production plane

18 Septembert 2007V.Kekelidze, V-high mult. conf22 Straw Tracker preliminary

18 Septembert 2007V.Kekelidze, V-high mult. conf23 Barrel Straw Tracker

18 Septembert 2007V.Kekelidze, V-high mult. conf24 EC Straw Tracker

18 Septembert 2007V.Kekelidze, V-high mult. conf25 Occupancy in the straw segments at various radiuses R = 30 cmR = 115 cm

18 Septembert 2007V.Kekelidze, V-high mult. conf26 TPC option for the Tracker

18 Septembert 2007V.Kekelidze, V-high mult. conf27 Time of Flight t he major detector for particle identification separation should be provided for pion / kaon in the momentum range 0-1,5 GeV/c for proton / kaon in the momentum range 0-2,5 GeV/c 2 stations of scintillation counters situated symmetrically from the interaction region near the beam pipe give the start signal RPC detectors on the radius 1,3 m provides the TOF measurement in addition RPS provides targeting for track reconstruction in BT

18 Septembert 2007V.Kekelidze, V-high mult. conf28 Proposed parameters Radius from the beam line - 1,3 m Time resolution -100 ps Max momentum of π/K system separated better than 2,5 σ at 1,3GeV/c Efficiency (acceptance) for π/K – better than 97%

18 Septembert 2007V.Kekelidze, V-high mult. conf29 Configuration the RPC TOF system looks like barrel with the length 4 m and radius of 1,3 m. the barrel surface is about 33 m2 the dimensions of one RPC counter is 7 cm x 100 cm it has 150 pads with size 2,3cm x 2 cm. the full barrel is covered by 160 counters the total number of readout channels is 24000

18 Septembert 2007V.Kekelidze, V-high mult. conf30

18 Septembert 2007V.Kekelidze, V-high mult. conf31

18 Septembert 2007V.Kekelidze, V-high mult. conf32

18 Septembert 2007V.Kekelidze, V-high mult. conf33

18 Septembert 2007V.Kekelidze, V-high mult. conf34 Gas gap = 0.23 mm Readout strip thickness = 0.5 mm Total active area width = 11.2 cm Honeycomb width = 12 cm Inner glass width = 11.2 cm Outer glass width = 11.5 cm PCB width = 13 cm Outer glass = 1.1 mm Inner glass = 0.55 mm carbon tape = 0.9 mm Mylar thickness = 0.25 mm PCB thickness = 1.5 mm Honeycomb thickness = 9.5 mm Strip width = 3 cm Strip interval = 0.3 cm PCB length = 52.8 cm Strip length = 47 cm Inner glass length = 47 cm Honeycomb = 48 cm Outer glass length = 47.4 cm TOF RPC design

18 Septembert 2007V.Kekelidze, V-high mult. conf35

18 Septembert 2007V.Kekelidze, V-high mult. conf36 Separation for Central events

18 Septembert 2007V.Kekelidze, V-high mult. conf37 Separation for Central events π+π+ K+K+ p

18 Septembert 2007V.Kekelidze, V-high mult. conf38 Electromagnetic Calorimeter absorber / scintillator sandwich with MAPD readout In progress

18 Septembert 2007V.Kekelidze, V-high mult. conf39 Zero Degree Calorimeter measurement of centrality: b~ A - Nspect selection of centrality at trigger level measurement of event-by-event fluctuations to exclude the fluctuation of participants monitor of beam intensity by detecting the neutrons from electromagnetic dissociation ε e / ε h = 1 - compensated calorimeter Lead / Scintillator sandwich

18 Septembert 2007V.Kekelidze, V-high mult. conf40 Schematic view of ZDC configuration Very peripheral collision Detection of neutrons. (4 modules) Beam hole Full beam intensity. Minimum 16 modules. spectator spots at Z=3 m E au =4.5 AGeV X Z Optional

18 Septembert 2007V.Kekelidze, V-high mult. conf41 The works on MPD design have been started high activity of many experts New ideas & suggestions are under consideration still Full simulation and event reconstruction works are in progress The configurations for TPC & Ecal will be proposed soon The major milestones are fixed the Letter of Intend to be ready by January 2008 Summary

18 Septembert 2007V.Kekelidze, V-high mult. conf42 Thanks to the working group NICA center group: Afanasiev S.V. Nikitin V.A. Borisov V.V. Peshekhonov V.D. Pavlyuk A.V. Golovatyuk V.M. Kurepin A.B. + volunteers Shabunov A.V. Potrebenikov YU.K. Zanevskij Yu.V. Kiryushin Yu.T. Murin Yu.A. Tyapkin I.A. Arkhipkin D. Abramyan H. Avdejchikov V.V. …….…..

18 Septembert 2007V.Kekelidze, V-high mult. conf43 Spare

18 Septembert 2007V.Kekelidze, V-high mult. conf44 I этап: 2007 – 2008 гг. - Развитие Нуклотрона - подготовка Технического проекта NICA - начало испытаний прoтотипов элементов MPD и NICA II этап: 2008 – 2012 гг. - Разработка и создание Бустера нуклотрона - Разработка и создание коллайдера NICA и установки MPD III этап: 2010 – 2013 гг. - монтаж коллайдера и установки MPD IV этап: 2013 г. - наладка и запуск Key experiments to understand the fundamental nature of matter Основные этапы и организация работ Основные этапы:

18 Septembert 2007V.Kekelidze, V-high mult. conf45 Требуется показать реализуемость проекта, для чего необходимо: Определить и апробировать составляющие субпроекты; наметить график подготовки полномасштабного технического проекта (TDR) Определить основных исполнителей и начать формирование Международной Коллаборации для его реализации Уточнить временную шкалу реализации проекта и его стоимость; возможные источники финансирования Key experiments to understand the fundamental nature of matter Срочные работы первого этапа:

18 Septembert 2007V.Kekelidze, V-high mult. conf46 Организован в 2006: А.Н.Сисакян А.С.Сорин В.Д.Тонеев А.Д.Коваленко И.Н.Мешков А.И.Малахов С.В.Афанасьев В.А.Никитин Проводятся регулярные совещания; проведен ряд расширенных совещаний (в т.ч. «Круглый стол» с привлечением внешних экспертов) Key experiments to understand the fundamental nature of matter Инициативный (координационный) комитет

18 Septembert 2007V.Kekelidze, V-high mult. conf47 5 Modules: 1-st, 3-th, 5-th – φ (2; 2; 4 layers); 2-d, 4-th - ± 7 o ( 3; 3 layers) L -2,4 m; R - from 20 cm to 120 cm 4 mm in diameter straws – ; Tracker (Barrel Straw Tracker) preliminary

18 Septembert 2007V.Kekelidze, V-high mult. conf48 4 mm in diameter segmented straws, L -2,4 m: – pc 20 cm 40 cm 60 cm Segmentation of 1-st and 2-d modules: Segmentation of 3-th, 4-th and 5-th modules: 60 cm Total: channels Tracker (Barrel Straw Tracker) continuation