Автор: Фомичева С.Е., учитель физики МБОУ «Средняя школа 27» города Кирова.

Презентация:



Advertisements
Похожие презентации
Методы наблюдения и регистрации элементарных частиц.
Advertisements

Методы наблюдения и регистрации элементарных частиц - методы, основанные на свойстве радиоактивных излучений и частиц производить ионизацию атомов. С.
Опорный конспект по теме «Экспериментальные методы регистрации элементарных частиц » Авторы: Морозова Н.В., учитель физики МОУ лицея 40 г.Петрозаводска.
Семакова Н. В., учитель физики МОУ «Тотемская СОШ 1» « ….. воспитание творческих способностей в человеке основывается на развитии самостоятельного мышления»
Методы наблюдения и регистрации элементарных частиц.
Методы наблюдения и регистрации элементарных частиц.
Методы наблюдения и регистрации элементарных частиц.
Презентацию подготовили: Андреева Валерия Алина Колбасенко Хлусов Владислав Леба Никита.
Методы наблюдения и регистрации элементарных частиц Грошева Марина Александровна.
Каковы примерно размеры атома?. Какую модель атома предложил Томсон?
Цели урока: Образовательные: дать представление о методах регистрации заряженных частиц, раскрыть особенности каждого метода, выявить основные закономерности,
ВЫПОЛНИЛА УЧЕНИЦА 11 «А» ЖАРИКОВА ЕЛИЗАВЕТА МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ.
Эффективность (отношение количества зарегистрированных частиц к числу частиц, попавших в прибор) Регистрирующий прибор – более или менее сложная макроскопическая.
Методы наблюдения и регистрации элементарных частиц.
Методы регистрации заряженных частиц Для изучения ядерных явлений были разработаны многочисленные методы регистрации элементарных частиц и излучений. Рассмотрим.
Методы наблюдения и регистрации элементарных частиц. Сцинтилляционный счетчик. Счетчик Гейгера. Искровая камера. Камера Вильсона. Пузырьковая камера. Метод.
Экспериментальные методы регистрации ионизирующих излучений 11 класс Подготовили: Гаськова М. Яремич В. учитель Антикуз Е.В.
Эксперементальные методы исследования частиц. Экспериментальные методы исследования частиц Счётчик Гейгера Камера Вильсона Пузырьковая камера Фотографические.
Экспериментальные методы исследования частиц.
Экспериментальные методы исследования частиц Ядерная физика 9 класс.
Транксрипт:

Автор: Фомичева С.Е., учитель физики МБОУ «Средняя школа 27» города Кирова

Методы регистрации и наблюдения элементарных частиц Счетчик Гейгера Камера Вильсона Пузырьковая камера Метод фотоэмульсий Сцинтилляционный метод Искровая камера

Ханс Вильгельм Гейгер Предназначен для автоматического подсчета частиц. Позволяет регистрировать до и более частиц в секунду. Регистрирует почти каждый электрон (100%) и 1 из 100 гамма-кванта (1%) Регистрация тяжелых частиц затруднена (1908 г.)

Устройство: 1. Стеклянная трубка, заполненная аргоном 2. Катод –тонкий металлический слой 3. Анод – тонкая металлическая нить 4. Регистрирующее устройство Для обнаружения γ-кванта внутреннюю стенку трубки покрывают материалом, из которого γ-кванты вырывают электроны.

Принцип действия : Действие основано на ударной ионизации. Заряженная частица, пролетая в газе, отрывает у атомов электроны. Возникает лавина электронов и ионов. Ток через счетчик резко возрастает. На резисторе R образуется импульс напряжения, который фиксируется счетным устройством. Напряжение между анодом и катодом резко уменьшается. Разряд прекращается, счетчик снова готов к работе

Чарльз Томсон Риз Вильсон Предназначена для наблюдения и получения информации о частицах. Частица при прохождении оставляет след – трек, который можно наблюдать непосредственно или фотографировать. Фиксируют только заряженные частицы, нейтральные не вызывают ионизацию атома, об их присутствии судят по вторичным эффектам. (1912г.)

Устройство: 1. Источник частиц 2. Кварцевое стекло 3. Электроды для создания электрического поля 5. Поршень 4. Вентилятор 6. Треки 7. Камера заполнена парами воды и спирта

Принцип действия : Действие основано на использовании неустойчивого состояния среды. В камере пар близок к насыщению. При опускании поршня происходит адиабатное расширение и пар становится перенасыщенным. Капельки воды образуют треки. Пролетающая частица ионизирует атомы, на которых конденсирует пар, находящийся в неустойчивом состоянии. Поднимается поршень, капельки испаряются, электрическое поле удаляет ионы и камера готова принять следующую частицу

Информация о частицах: по длине трека – об энергии частицы (чем L, тем W ); по количеству капель на единицу длины – о скорости (чем N, тем v); По толщине трека – о величине заряда ( чем d, тем q) По кривизне трека в магнитном поле об отношении заряда частицы к ее массе (чем R, тем m и v, тем q); По направлению изгиба о знаке заряда частицы.

Дональд Артур Глейзер (1952г.) Предназначена для наблюдения и получения информации о частицах. Изучаются треки, но, в отличии от камеры Вильсона, позволяет изучать частицы с большими энергиями. Имеет более короткий рабочий цикл – около 0,1 с. Позволяет наблюдать распад частиц и вызываемые ею реакции.

Устройство: Аналогично, как у камеры Вильсона, но вместо паров используется жидкий водород или пропан Жидкость находится под высоким давлением при температуре выше температуры кипения. Опускается поршень, давление падает и жидкость оказывается в неустойчивом, перегретом состоянии. Пузырьки пара образуют треки. Пролетающая частица ионизирует атомы, которые становятся центрами парообразования. Поднимается поршень, пар конденсирует, электрическое поле удаляет ионы и камера готова принять следующую частицу

(1895г.) Антуан Анри Беккерель Пластинка покрыта эмульсией, содержащую большое количество кристаллов бромида серебра. Пролетая, частица отрывает электроны у атомов брома, цепочка таких кристаллов образует скрытое изображение. При проявлении в этих кристаллах восстанавливавется металлическое серебро. Цепочка зерен серебра образует трек. Этот метод позволяет регистрировать редкие явления между частицами и ядрами.

1. Алюминиевая фольга 2. Сцинтиллятор 3. Фотокатод 4. Динод 5. Анод Метод сцинтилляций состоит в подсчете крохотных вспышек света при попадании α-частиц на экран, покрытый сульфидом цинка. Представляет собой комбинацию сцинтиллятора и фотоумножителя. Регистрируют все частицы и 100% гамма-квантов. Позволяет определить энергию частиц.

Представляет систему параллельных металлических электродов, пространство между которыми заполнено инертным газом. Расстояние между пластинами от 1 до 10 см. Разрядные искры строго локализованы. Они возникают там, где появляются свободные заряды. Искровые камеры могут иметь размеры порядка нескольких метров. При пролете частицы между пластинами пробивает искра, создавая огненный трек. Преимущество в том, что процесс регистрации управляем.