Фотонные кристаллы 1. Введение С древних времен человека, нашедшего фотонный кристалл, завораживала в нем особая радужная игра света. Было выяснено, что.

Презентация:



Advertisements
Похожие презентации
Презентация на тему: «Фотонные сенсоры. Фотонные кристаллы» Подготовил Иван Огурцов, 543 гр.
Advertisements

Лекции по физике. Оптика Интерференция света. 2 Корпускулярная и волновая теории света Первоначально возникли и развивались две теории света: корпускулярная.
Сигаева В.В., учитель физики. Свет - это электромагнитные волны. Во всех процессах взаимодействия света с веществом основную роль играет электрический.
Квантоворазмерные эффекты и их применение в оптоэлектронике 8-лекция: Малоразмерные электронные газы в магнитном поле. Квантовый эффект Холла. Ташкентский.
РАСПРОСТРАНЕНИЕ СВЕТОВЫХ ИМПУЛЬСОВ В ОДНОМЕРНЫХ ФОТОННЫХ КРИСТАЛЛАХ Дадашзадех гаргари Нушин БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК Минск 2012.
1 Лекции по физике. Механика Волновые процессы. Релятивистская механика.
Круглый и прямоугольный волновод
1 Отражение и преломление света на границе раздела двух сред 1. Основные положения геометрической оптики Закон преломления: падающий луч, преломленные.
Дифракция света Характерным проявлением волновых свойств света является дифракция света отклонение от прямолинейного распространения на резких неоднородностях.
0 Основные понятия и законы физики САМОЕ СЛОЖНОЕ ПОНЯТИЕ !!! Aftertomorrow.

ИНТЕРФЕРЕНЦИЯ. 1. Понятие когерентности. Пусть две волны, накладываясь друг на друга, возбуждают в некоторой точке пространства гармонические колебания.
Метаматериалы и плазмоника аспирантка Игнатьева Дарья Олеговна.
Развитие взглядов на природу света Волновые и квантовые свойства света.
Квантовая природа излучения. Тепловое излучение Тела, нагретые до достаточно высоких температур, светятся. Свечение тел - тепловое излучение Совершается.
ПОЛЯРИЗАЦИЯ СВЕТА. Поляризация света Вектор напряженности электрического поля называется световым вектором. Плоскость, в которой колеблется вектор, называется.
Геометрическая оптика Мясникова Г.И. Учитель физики.
Оптика. Свет.. Определение. Оптика (от др.-греч. πτική появление или взгляд) раздел физики, рассматривающий явления, связанные с изменением во времени.
ПРЕЗЕНТАЦИЯ НА ТЕМУ:ОПТОВОЛОКОННЫЕ СИСТЕМЫ СВЯЗИ Москва, 2018 год.
Сегодня: четверг, 20 февраля 2014 г. ДАВЛЕНИЕ СВЕТА Рассмотренные нами явления интерференции, дифракции, поляризации объясняются с точки зрения волновой.
Транксрипт:

Фотонные кристаллы 1

2

Введение С древних времен человека, нашедшего фотонный кристалл, завораживала в нем особая радужная игра света. Было выяснено, что радужные переливы чешуек и перьев различных животных и насекомых обусловлены существованием на них сверхструктур, получивших за свои отражающие свойства название фотонные кристаллы. Фотонные кристаллы в природе встречаются в/на: минералах (кальцит, лабрадор, опал); на крыльях бабочек; панцирях жуков; глазах некоторых насекомых; водорослях; чушуйках рыб; перьях павлина. 3

Фотонные кристаллы Это материал, структура которого характеризуется периодическим изменением показателя преломления в пространственных направлениях Фотонный кристалл на основе оксида алюминия. M. DEUBEL, G.V. FREYMANN, MARTIN WEGENER, SURESH PEREIRA, KURT BUSCH AND COSTAS M. SOUKOULIS «Direct laser writing of three- dimensional photonic-crystal templates for telecommunications»// Nature materials Vol. 3, P

Немного истории… 1887 г. Релей впервые исследовал распространение электромагнитных волн в периодических структурах, что является аналогом одномерного фотонного кристалла Photonic Crystals - термин был введён в конце 1980-х гг. для обозначения оптического аналога полупроводников. Это искусственные кристаллы, изготовленные из полупрозрачного диэлектрика, в котором упорядоченным образом создаются воздушные «дырки». 5

Фотонные кристаллы – будущее энергетики мира Высокотемпературные фотонные кристаллы могут выступать не только в виде источника энергии, но и как чрезвычайно качественные детекторы (энергетические, химические) и сенсоры. В основе фотонных кристаллов, созданных массачусетскими учеными, лежат вольфрам и тантал. Данное соединение способно удовлетворительно работать при очень высоких температурах. Вплоть до ˚С. Для того, чтобы фотонный кристалл начал преобразовывать один вид энергии в другой, удобный для использования, подойдет любой источник (тепловой, радиоизлучение, жесткая радиация, солнечный свет и т.д.). 6

7

Закон дисперсии электромагнитных волн в фотонном кристалле (схема расширенных зон). В правой части показаны для заданного направления в кристалле соотношения между частотой ? и величинами ReQ (сплошные кривые) и ImQ (пунктирная кривая в стоп зоне омега -

Теория фотонных запрещённых зон Лишь в 1987 году, когда Эли Яблонович (Eli Yablonovitch), сотрудник Bell Communications Research (ныне профессор Калифорнийского университета в Лос-Анджелесе), ввел понятие запрещенной зоны для электромагнитных волн (electromagnetic band gap). Для расширения кругозора: Лекция Эли Яблоновича yablonovitch-uc-berkeley/view Лекция Джона Пендри john-pendry-imperial-college/view 9

В природе фотонные кристаллы также встречаются: на крыльях африканских бабочек-парусников, перламутровое покрытие раковин моллюсков, таких, как галиотисы, усики морской мыши и щетинки многощетинкового червя. Фото браслета с опалом. Опал представляет собой природный фотонный кристалл. Его называют «камнем обманчивых надежд» 10

11

Преимущества фильтров на основе ФК перед абсорбционным механизмом (поглощающим механизмом) для живых организмов: Интерференционная окраска не требует поглощения и диссипации световой энергии, => нет нагрева и фотохимического разрушения пигментного покрытия. Живущие в жарком климате бабочки обладают переливчатым рисунком крыльев, а структура фотонного кристалла на поверхности, как оказалось, снижает поглощение света и, следовательно, разогрев крыльев. Морская мышь уже давно применяет на практике фотонные кристаллы. 12

Morpho didius бабочка с радужной окраской и микрофотография её крыла, как пример дифракционной биологической микроструктуры. Переливающийся натуральный опал (полудрагоценный камень) и изображение его микроструктуры, состоящей из плотноупакованных сфер диоксида кремния. 13

Классификация фотонных кристаллов 1. Одномерные. В которых коэффициент преломления периодически изменяется в одном пространственном направлении как показано на рисунке. На этом рисунке символом Λ обозначен период изменения коэффициента преломления, и показатели преломления двух материалов (но в общем случае может присутствовать любое число материалов). Такие фотонные кристаллы состоят из параллельных друг другу слоев различных материалов с разными коэффициентами преломления и могут проявлять свои свойства в одном пространственном направлении, перпендикулярном слоям. 14

2. Двумерные. В которых коэффициент преломления периодически изменяется в двух пространственных направлениях как показано на рисунке. На этом рисунке фотонный кристалл создан прямоугольными областями с коэффициентом преломления n1, которые находятся в среде с коэффициентом преломления n2. При этом, области с коэффициентом преломления n1 упорядочены в двумерной кубической решетке. Такие фотонные кристаллы могут проявлять свои свойства в двух пространственных направлениях, и форма областей с коэффициентом преломления n1 не ограничивается прямоугольниками, как на рисунке, а может быть любой (окружности, эллипсы, произвольная и т. д.). Кристаллическая решётка, в которой упорядочены эти области, также может быть другой, а не только кубической, как на приведённом рисунке. 15

3. Трехмерные. В которых коэффициент преломления периодически изменяется в трёх пространственных направлениях. Такие фотонные кристаллы могут проявлять свои свойства в трёх пространственных направлениях, и можно их представить как массив объёмных областей (сфер, кубов и т. д.), упорядоченных в трёхмерной кристаллической решётке. 16

Применение фотонных кристаллов Первое применение - это спектральное разделение каналов. Во многих случаях по оптическому волокну идет не один, а несколько световых сигналов. Их бывает нужно рассортировать - направить каждый по отдельному пути. Например - оптический телефонный кабель, по которому идет одновременно несколько разговоров на разных длинах волн. Фотонный кристалл - идеальное средство для "высечения" из потока нужной длины волны и направления ее туда, куда требуется. Второе - кросс для световых потоков. Такое устройство, предохраняющее от взаимного воздействия световых каналов при их физическом пересечении, совершенно необходимо при создании светового компьютера и световых компьютерных чипов. 17

Фотонный кристалл в телекоммуникации Прошло не так много лет с начала первых разработок, как инвесторам стало ясно, что фотонные кристаллы являются оптическими материалами принципиально нового типа и что у них - блестящее будущее. Выход разработок фотонных кристаллов оптического диапазона на уровень коммерческого применения, скорее всего, произойдет в сфере телекоммуникаций. 18

Методы формирования фотонных кристаллов Первый способ: Использование литографических технологий. Фотолитография Вторым способом: Голография. 19

20 Голография Зеркало

21

Достоинства и недостатки литографических и голографических методов получения ФК Плюсы: высокое качество формируемой структуры. Быстрая скорость производства Удобство в массовом производстве Минусы требуется дорогостоящее оборудование возможно ухудшение резкости края Сложность изготовления установок 22

На рисунке 1а показано изображение типичного образца, состоящего из 40 слоев в плоскости стержней на расстоянии а = 0,8 мкм и (с / а) 2 = 2, полученное в сканирующем электронном микроскопе. Время изготовления решетки было около 25 минут. 23

Крупным планом на дне видна оставшаяся шероховатость порядка 10 нм. Та же самая шероховатость видна на наших шаблонах SU-8, изготовленных голографической литографией. Это ясно показывает, что эта шероховатость не связана с процессом изготовления, а скорее связана с конечным разрешением фоторезиста. 24

Рисунки 1b и c - изображения SEM края и вершины различных сломанных образцов, которые показывают эллиптическое поперечное сечение прута и последовательность укладки слоя слоем. 25

Чтобы переместить фундаментальные PBGs длины волн в телекоммуникационном режиме от 1,5 мкм и 1,3 мкм, необходимо иметь в плоскости стержней расстояние порядка 1 мкм и меньше. У изготовленных образцов имеется проблема: стержни начинают соприкасаться друг с другом, что приводит к нежелательному большому заполнению фракции. Решение: Уменьшение диаметра стержня, следовательно, заполнения фракции, путем травления в кислородной плазме 26

Оптические свойства ФК Распространение излучения внутри фотонного кристалла благодаря периодичности среды становится похожим на движение электрона внутри обычного кристалла под действием периодического потенциала. При определенных условиях в зонной структуре ФК образуются щели, аналогично запрещенным электронным зонам в естественных кристаллах. 27

Двумерный периодический фотонный кристалл получают, формируя периодическую структуру вертикальных диэлектрических стержней, посаженных квадратно- гнездовым способом на подложке из двуокиси кремния. Располагая "дефекты" в фотонном кристалле, можно создавать волноводы, которые изогнутые под любым углом дают 100% пропускание Двумерные фотонные структуры с запрещенной зоной 28

Новый способ получения структуры с поляризационно-чувствительными фотонными запрещёнными зонами Разработка подхода к объединению структуры фотонной запрещённой зоны с др. оптическими и оптико-электронными приборами Наблюдение коротко- и длинноволновой границы диапазона. Целью опыта является: 29

Основными факторами, которые определяют свойства структуры с фотонной запрещенной зоной (PBG), являются контраст преломления, доля высоких и низких показателей материалов в решетке и расположение элементов решетки. Конфигурация используемого волновода сравнима с полупроводниковым лазером. Матрица очень маленькая (100 нм в диаметре) отверстия были вытравлены на сердцевине волновода, с образованием гексагональной решетки 30

Рис.2 a Эскиз решетки и зоны Бриллюэна, иллюстрирующий направления симметрии в горизонтальной близко "упакованной" решетке. b, c Измерение характеристик передачи на 19-нм фотонной решетке. 31 Зоны Бриллюэна с симметричными направлениями Реальное Пространоств о решетки Пе ред ача

Участки, в которых нет разрешенных частот, указывают на существование полосы задерживания или запрещенной зоны, что может дать начало полной фотонной запрещенной зоне (PBG). 32

Рис.4 Снимки электрического поля профилей бегущих волн, соответствующих полосе 1 (а) и полосе 2 (b), рядом с точкой К для ТМ поляризации. В а поле имеет такую же отражательную симметрию относительно y-z плоскости, что и плоская волна, поэтому должно легко взаимодействовать с входящей плоской волной. В противовес этому, в b поле ассиметрично, что не позволяет осуществить данное взаимодействие. 33

Выводы: Структуры с ФЗЗ могут использоваться в качестве зеркал и элементов для непосредственного управления эмиссией в полупроводниковых лазерах Демонстрация ФЗЗ концепций в геометрии волновода позволит реализовать очень компактные оптические элементы Включение локализованных смещений фазы (дефектов) в решетку позволит произвести новый тип микрополости и так высоко сконцентрировать свет, что можно будет использовать нелинейные эффекты 34

Презентацию подготовили: Тоимбек Динара (1-15 слайды) Егорова Татьяна (16-23 слайды) Умнова Ангелина (24-26 слайды) Шамилова Регина (27-29 слайды) 35

Благодарим за внимание 36