ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КРАСНОЯРСКИЙ МЕДИКО-ФАРМАЦЕВТИЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО.

Презентация:



Advertisements
Похожие презентации
Ферменты и пигменты микроорганизмов. ВЫПОЛНИЛИ СТУДЕНТКИ М-22 ГРУППЫ: СИДОРУК ВЕРА И ОЛЕЙНИК РЕГИНА В медицинской промышленности с помощью ферментов микроорганизмов.
Advertisements

Физиология микроорганизмов – изучает жизнедеятельность микробных клеток, процессы питания, дыхания, роста, размножения и закономерности взаимодействия.
Тема: Строение и химический состав клетки. Вы уже знаете, что тела растений и животных построены из клеток. Организм человека тоже состоит из клеток.
Цели :напомнить учащимся сущность гомеостаза как необходимого условия существования биологических систем ; формировать знания о взаимосвязи пластического.
ТЕМА: Ф ИЗИОЛОГИЯ МИКРООРГАНИЗМОВ. В АЖНЕЙШИЕ МИКРОБИОЛОГИЧЕСКИЕ ПРОЦЕССЫ.
Обмен веществ и превращение энергии в клетке. Обмен вещества(метаболизм) Совокупность протекающих в клетке химических превращений, обеспечивающих её рост,
Презентация к уроку по биологии (9 класс) по теме: обмен веществ и энергии в клетке.
Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 4» П Р Е З Е Н Т А Ц И Я по химии на тему «Вещества, входящие в состав.
В составе клетки обнаружено более 80 химических элементов, при этом каких- либо специальных элементов, характерных только для живых организмов, не выявлено.
Обмен веществ и энергии организма с внешней средой Подготовила: Студентка 22 сб группы Ахтемова Мавиле.
ОРГАНИЧЕСКИЕ ВЕЩЕСТВА КЛЕТКИ. Цель урока: Изучить особенности строения органических веществ (белки, жиры, углеводы) Изучить особенности строения органических.
0 ОРГАНИЧЕСКИЕ ВЕЩЕСТВА, ВХОДЯЩИЕ В СОСТАВ КЛЕТКИ.
Углеводный обмен Контроль над содержанием сахара в крови.
Ферменты выполняют и множество других функций. Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов.
УГЛЕВОДЫ, ИХ КЛАССИФИКАЦИЯ И ЗНАЧЕНИЕ Набокова Оксана Владимировна учитель химии МКОУ « В ( С ) ОШ 4 при ИК »
Тема: Липиды Задачи: Изучить строение, свойства и функции липидов в клетке. Глава I. Химический состав клетки.
Углеводы. Строение и функции. Химический состав клетки.
МОДУЛЬ 1.3 Вещества, входящие в состав пищевых продуктов: значение их в питании, энергетическая ценность.
9 класс Обмен веществ (метаболизм) = ассимиляции + диссимиляции Органические вещества пищи являются основным источником не только материи, но и энергии.
Белки Белки – высокомолекулярные природные соединения (биополимеры), состоящие из остатков аминокислот, которые соединены пептидной связью. Белки Протеины.
Транксрипт:

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КРАСНОЯРСКИЙ МЕДИКО-ФАРМАЦЕВТИЧЕСКИЙ КОЛЛЕДЖ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ» Лекция 7 ТЕМА: Физиология микроорганизмов.

План: Питание, дыхание, рост и размножение микроорганизмов. Ферменты и пигменты микроорганизмов.

ФИЗИОЛОГИЯ МИКРООРГАНИЗМОВ Физиология изучает жизненные функции микроорганизмов: питание, дыхание, рост и размножение. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм). Сущность обмена веществ составляют два противоположных и вместе с тем взаимосвязанных процесса: ассимиляция (анаболизм) и диссимиляция (катаболизм).

В процессе ассимиляции происходит усвоение питательных веществ и использование их для синтеза клеточных структур.

При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. В результате распада питательных веществ происходит расщепление сложных органических соединений на более простые, низкомолекулярные. Часть из них выводится из клетки, а другие снова используются клеткой для биосинтетических реакций и включаются в процессы ассимиляции. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов.

Особенностью микроорганизмов является интенсивный обмен веществ. За сутки при благоприятных условиях одна микробная клетка может переработать такое количество питательных веществ, которое в раз больше ее массы.

ХИМИЧЕСКИЙ СОСТАВ БАКТЕРИЙ Для понимания процессов обмена веществ необходимо знать химический состав микроорганизмов. Микроорганизмы содержат те же химические вещества, что и клетки всех живых организмов. Важнейшими элементами являются органогены (углерод, водород, кислород, азот), которые используются для построения сложных органических веществ: белков, углеводов и липидов. Микроорганизмы содержат также зольные или минеральные элементы. Большая часть их химически связана с органическими веществами, остальные присутствуют в клетке в виде солей.

В количественном отношении самым значительным компонентом клетки является вода, которая составляет 75 85%; на долю сухого вещества, которое состоит из органических (белки, нуклеиновые кислоты, углеводы, липиды) и минеральных соединений, приходится 1525%.

Вода Значение воды в жизнедеятельности клетки велико. Все вещества поступают в клетку с водой, с ней же удаляются продукты обмена. Вода в микробной клетке находится в свободном состоянии как самостоятельное соединение, но большая часть ее связана с различными химическими компонентами клетки (белками, углеводами, липидами) и входит в состав клеточных структур.

Свободная вода принимает участие а химических реакциях, протекающих в клетке, является растворителем различных химических соединений, а также служит дисперсной средой для коллоидов. Содержание свободной воды в клетке может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Так, у споровых форм бактерий значительно меньше воды, чем у вегетативных клеток. Наибольшее количество воды отмечается у капсульных бактерий.

Белки (5080% сухого вещества) определяют важнейшие биологические свойства микроорганизмов. Это простые белки протеины и сложные протеиды. Большое значение в жизнедеятельности клетки имеют нуклеопротеиды соединение белка с нуклеиновыми кислотами (ДНК и РНК). Кроме нуклеопротеидов, в микробной клетке содержатся в незначительных количествах липопротеиды, гликопротеиды, хромопротеиды. Белки распределены в цитоплазме, нуклеоиде, они входят в состав структуры клеточной стенки. К белкам принадлежат ферменты, многие токсины (яды микроорганизмов). Видовая специфичность микроорганизмов зависит от количественного и качественного состава белковых веществ.

Схема синтеза белка в эукариотной клетке.

Схема синтеза белка в прокариотной клетке.

Нуклеиновые кислоты В микробной клетке выполняют те же функции, что и в клетках животного происхождения. ДНК содержится в ядре (нуклеоиде) и обусловливает генетические свойства микроорганизмов. РНК принимает участие в биосинтезе клеточных белков, содержится в ядре и цитоплазме. Общее количество нуклеиновых кислот колеблется от 10 до 30% сухого вещества микробной клетки и зависит от ее вида и возраста.

Схема строения цитоплазматической мембраны

Углеводы ( 1218% сухого вещества) используются микробной клеткой в качестве источника энергии и углерода. Из них состоят многие структурные компоненты клетки (клеточная оболочка, капсула и другие). Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий. Клетки микроорганизмов содержат простые (моно и дисахариды) и высокомолекулярные (полисахариды) углеводы. У ряда бактерий могут быть включения, по химическому составу напоминающие гликоген и крахмал, они играют роль запасных питательных веществ в клетке. Углеводный состав различен у разных видов микроорганизмов и зависит от их возраста и условий развития.

Расположение макромолекул гликопептида клеточной стенки. Жирными линиями показаны скелеты полисахаридных цепей, расположенные ближе к поверхности; более тонкими подстилающие их полисахаридные цепи. Линии с поперечными штрихами изображают пептидные цепочки, связывающие эти полисахаридные цепи. Межпептидные мостики, состоящие из пяти остатков глицина, обозначены пунктирными линиями.

Липиды (0,2-40% сухого веществ) являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки, они участвуют в энергетическом обмене. В некоторых микробных клетках липиды выполняют роль запасных веществ. Липиды состоят в основном из нейтральных жиров, жирных кислот, фосфолипидов. Общее количество их зависит от возраста и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%, что обусловливает устойчивость этих бактерий к воздействию факторов внешней среды. В клетках микроорганизмов липиды могут быть связаны с углеводами и белками, составляя сложный комплекс, определяющий токсические свойства микроорганизмов.

Схематическое изображение клеточной стенки грамотрицательных бактерий Bacterium coli (no Роузу): 1 липопротеидный слой с выступами и бугорками; 2 липополисахаридный слой; з каналы; 4 рыхлоупакованные молекулы белка; 5 гликопептидный слой; в цитоплазматическая мембрана.

Минеральные вещества фосфор, натрий, калий, магний, сера, железо, хлор и другие в среднем составляют 14% сухого вещества. Фосфор входит в состав нуклеиновых кислот, фосфолипидов, многих ферментов, а также АТФ (аденозинтрифосфорной кислоты), которая является аккумулятором энергии в клетке. Натрий участвует в поддержании осмотического давления в клетке. Железо содержится в дыхательных ферментах. Магний входит в состав рибонуклеата магния, который локализован на поверхности грамположительных бактерий.

Для развития микроорганизмов необходимы микроэлементы, содержащиеся в клетке в очень малых количествах. К ним относят кобальт, марганец, медь, хром, цинк, молибден и многие другие. Микроэлементы участвуют в синтезе некоторых ферментов и активируют их. Соотношение отдельных химических элементов в микробной клетке может колебаться в зависимости от вида микроорганизма, состава питательной среды, характера обмена и условий существования во внешней среде.

ПИТАНИЕ БАКТЕРИЙ Всем микроорганизмам для осуществления процессов питания, дыхания, размножения необходимы питательные вещества. В качестве питательных веществ и источников энергии микроорганизмы используют различные органические и неорганические соединения, для нормальной жизнедеятельности им требуются также микроэлементы и факторы роста.

Процесс питания микроорганизмов имеет ряд особенностей: во-первых, поступление питательных веществ происходит через всю поверхность клетки; во-вторых, микробная клетка обладает исключительной быстротой метаболических реакций; в-третьих, микроорганизмы способны довольно быстро адаптироваться к изменяющимся условиям среды обитания. Разнообразие условий существования микроорганизмов обусловливает различные типы питания.

Типы питания Определяются по характеру усвоения углерода и азота. Источником других органогенов водорода и кислорода служит вода. Вода необходима микроорганизмам и для растворения питательных веществ, так как они могут проникать в клетку только в растворенном виде. По усвоению углерода микроорганизмы делят на два типа: автотрофы и гетеротрофы.

Автотрофы (от греч. autos сам, trophe питание) способны синтезировать сложные органические вещества из простых неорганических соединений. Они могут использовать в качестве источника углерода углекислоту и другие неорганические соединения углерода. Автотрофами являются многие почвенные бактерии (нитрифицирующие, серобактерии и др.).

Гетеротрофы (от греч. heteros другой, trophe питание) для своего роста и развития нуждаются в готовых органических соединениях. Они могут усваивать углерод из углеводов (чаще всего глюкозы), многоатомных спиртов, органических кислот, аминокислот и других органических веществ. Гетеротрофы представляют обширную группу микроорганизмов, среди которых различают сапрофитов и паразитов.

Это плесневый гриб-сапрофит Сапрофиты (от греч. sapros гнилой, phyton растение) получают готовые органические соединения от отмерших организмов. Они играют важную роль в разложении мертвых органических остатков, например бактерии гниения и др.

Паразиты (от греч. parasitos нахлебник) живут и размножаются за счет органических веществ живой клетки растений, животных или человека. К таким микроорганизмам относятся риккетсии, вирусы и некоторые простейшие

По способности усваивать азот микроорганизмы делятся также на две группы: аминоавтотрофы и аминогетеротрофы. Аминоавтотрофы для синтеза белка клетки используют молекулярный азот воздуха (клубеньковые бактерии, азотобактер) или усваивают его из аммонийных солей. Аминогетеротрофы получают азот из органических соединений аминокислот, сложных белков. К ним относят все патогенные микроорганизмы и большинство сапрофитов.

По источникам энергии среди микроорганизмов различают фототрофы, использующие для биосинтетических реакций энергию солнечного света (пурпурные серобактерии) и хемотрофы, которые получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенные для человека виды).

Однако резкой границы между типами питания микробов провести нельзя, так как есть такие виды микроорганизмов, которые могут переходить от гетеротрофного типа питания к автотрофному, и наоборот. В настоящее время для характеристики типов питания введена новая терминология: гетеротрофы называют органотрофами, а автотрофы литотрофами (от греч. litоs камень), так как подобные микроорганизмы способны расти в чисто минеральной среде.

Факторы роста Микроорганизмы для своего роста и размножения нуждаются в особых веществах, которые сами синтезировать не могут и должны получать их в готовом виде. Эти вещества называют факторами роста, и нужны они микробным клеткам в небольших количествах. К ним относят различные витамины, некоторые аминокислоты (необходимые для синтеза белка), пуриновые и пиримидиновые основания (идущие на построение нуклеиновых кислот) и др. Многие факторы роста входят в состав различных ферментов и играют роль катализаторов в биохимических процессах.

Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания. Транспорт питательных веществ. Питательные вещества могут проникать в цитоплазму микробных клеток только в виде небольших молекул и в растворенном виде. Сложные органические вещества (белки, полисахариды и др.) предварительно подвергаются воздействию ферментов, выделяемых микробной клеткой, и после этого становятся доступными для использования.

Транспорт питательных веществ в клетку и выход из нее продуктов метаболизма осуществляется в основном через цитоплазматическую мембрану. Питательные вещества проникают в клетку несколькими способами: 1. Пассивная диффузия, т. е. перемещение веществ через толщу мембраны, в результате чего выравниваются концентрация веществ и осмотическое давление по обе стороны оболочки. Таким путем могут проникать питательные вещества, когда концентрация в среде значительно превышает концентрацию веществ в клетке.

2.Облегченная диффузия проникновение питательных веществ в клетку с помощью активного переноса их особыми молекуламипереносчиками, называемыми пермеазами. Это вещества ферментной природы, которые локализованы на цитоплазматической мембране и обладают специфичностью. Каждая пермеаза адсорбирует соответствующее питательное вещество на наружной стороне цитоплазматической мембраны, вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне ее транспортируемое вещество в цитоплазму. Этот процесс совершается без использования энергии, так как перемещение веществ происходит от более высокой концентрации к более низкой.

Облегченная диффузия

3. Активный транспорт питательных веществ осуществляется также с помощью пермеаз, но этот процесс требует затраты энергии. В этом случае питательное вещество может проникнуть в клетку, если концентрация его в клетке значительно превышает концентрацию в среде.

4. В ряде случаев транспортируемое вещество может подвергаться химической модификации, и такой способ переноса веществ получил название переноса радикалов или транслокации химических групп. По механизму передачи транспортируемого вещества этот процесс сходен с активным транспортом. Выход веществ из микробной клетки осуществляется или в виде пассивной диффузии, или в процессе облегченной диффузии с участием пермеаз.

ФЕРМЕНТЫ И ИХ РОЛЬ В ОБМЕНЕ ВЕЩЕСТВ Ферменты это вещества белковой природы, вырабатываемые живой клеткой. Они являются биологическими катализаторами и играют важную роль в обмене веществ микроорганизмов. По химическому строению, свойствам и механизму действия ферменты микробов сходны с ферментами, образующимися в клетках и тканях животных и растений. Ферменты микробной клетки локализуются в основном в цитоплазме, некоторые содержатся в ядре и клеточной оболочке.

Микроорганизмы могут синтезировать самые разнообразные ферменты, относящиеся к шести известным классам: оксиредуктазы, трансферазы, гидролазы лиазы, изомеразы, лигазы. Характерным свойством ферментов является специфичность действия, т. е. каждый фермент реагирует с определенным химическим соединением или катализирует одну или несколько близких химических реакций. Например, фермент лактаза расщепляет лактозу, мальтаза мальтозу.

синтез фермента, удлиняющий теломеры. Клетки приобрели способность делиться в 2 раза больше, т.е. продолжительность их жизни возросла.

Активность ферментов зависит от температуры среды, рН и других факторов. Для многих патогенных микроорганизмов оптимальное значение рН 7,2 7,4, а оптимальная температура находится в пределах 3750 °С. Ферменты микроорганизмов классифицируются на экзоферменты и эндоферменты. Экзоферменты, выделяясь во внешнюю среду, расщепляют макромолекулы питательных веществ до более простых соединений, котоые могут быть усвоены микробной клеткой. Так, к экзоферментам относят гидролазы вызывающие гидролиз белков, жиров, углеводов.

В результате этих реакций белки расщепляются на аминокислоты и пептоны, жиры на жирные кислоты и глицерин, углеводы (полисахариды) на дисахариды и моносахариды. Распад белков вызывают ферменты протеазы, жиров липазы, углеводов карбогидразы. Эндоферменты участвуют в реакциях обмена веществ, происходящих внутри клетки.

У микроорганизмов различают также конститутивные и индуктивные ферменты. Конститутивные ферменты постоянно находятся в микробной клетке независимо от условий существования. Это в основном ферменты клеточного обмена: протеазы, липазы, карбогидразы и др. Индуктивные (адаптивные) ферменты синтезируются в клетке под влиянием соответствующего субстрата, находящегося в питательной среде, и когда микроорганизм вынужден его усваивать.

Например, если бактерии, не вырабатывающие в обычных условиях фермента амилазы, расщепляющей крахмал, засеять на питательную среду, где единственным источником углерода служит крахмал, то они начинают синтезировать этот фермент. Таким образом, индуктивные ферменты позволяют микробной клетке приспособиться к изменившимся условиям существования.

Наряду с ферментами обмена многие патогенные бактерии вырабатывают также ферменты агрессии, которые служат для преодоления естественных защитных барьеров макроорганизма и являются факторами патогенности. К таким ферментам относятся гиалуронидаза, дезоксирибонуклеаза, лецитовителаза и др. Например, гиалуронидаза расщепляет межклеточное вещество соединительной ткани (гиалуроновую кислоту) и тем самым способствует распространению возбудителя в макроорганизме.

Выделение микроорганизмами различных ферментов определяет их биохимические свойства. Ферментный состав любого микроорганизма является достаточно постоянным признаком, а различные виды микроорганизмов довольно четко различаются по набору ферментов. Поэтому изучение ферментативного состава имеет важное значение для дифференциации и идентификации различных микроорганизмов.

Практическое использование микробных ферментов. Издавна человек использовал ферментативную активность дрожжей пивоварении и виноделии. Применение ферментов в пищевой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Ферменты, выделенные из определенных видов микроскопических грибов, используются в процессе изготовления пшеничного теста, что позволяет увеличить объем, пористость выпеченного хлеба, улучшить его свежесть, аромат, вкус.

Ферментные препараты некоторых микроорганизмов применяют для ускорения процессов выделения соков из плодов и ягод. С целью получения высококачественных кормов для сельскохозяйственных животных процессы микробного синтеза используются при силосовании зеленых трав; благодаря ферментативной активности дрожжей, размножающихся на отходах нефти (парафинах), получают белкововитаминные концентраты, которые являются ценным питательным веществом их добавляют к грубым кормам для животных.

Ферменты позволяют некоторым микроорганизмам усваивать метан, и эти виды бактерий используют для борьбы с метаном в шахтах. Известно, что ферменты бактерий (в частности, сенной палочки) широко применяются в качестве биодобавок к стиральному порошку «Ока» и стиральной пасте «Био». Эти препараты удаляют белковые загрязнения, так как ферменты расщепляют белки до водорастворимых веществ, легко смываемых при стирке. В медицинской промышленности с помощью ферментов микроорганизмов получают витамины, гормоны, алкалоиды.

Ферменты: 1)Конститутивные – синтезируются бактериальной клеткой, не зависимо от среды на которой бактерии выращиваются. 2) Адаптивные - продуцируются данной бактерией лишь на присутствие специфического индуктора, находится в питательной среде.

Адоптивные ферменты позволяют приспособляться к изменившимся условием существования. Изучения ферментативного состава имеет важное значение для дифференциации и идентификации различных микроорганизмах.

ДЫХАНИЕ БАКТЕРИЙ Дыхание (или биологическое окисление) микроорганизмов представляет собой совокупность биохимических процессов, в результате которых освобождается энергия, необходимая для жизнедеятельности микробных клеток. Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться при постоянном притоке энергии. Микроорганизмы добывают энергию за счет окисления различных химических соединений: углеводов (чаще глюкозы), спиртов, органических кислот, жиров и т. д. Сущность окисления состоит в том, что окисляемое вещество отдает электроны, а восстанавливаемое получает их.

Пo типу дыхания все микроорганизмы разделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные (необязательные) анаэробы. Облигатные аэробы (микобактерии туберкулеза и др.) живут и развиваются: "при свободном доступе кислорода, т. е. реакции окисления осуществляются у них при участии молекулярного кислорода с высвобождением большого количества энергии. Примером может служить окисление глюкозы в аэробных условиях: С 6 Н 12 О 6 +6О 2 ^6СО 2 +6Н 2 О ,6 кД (688,5 ккал)

Роль пировнноградной кислоты в процессах дыхания и брожения.

Существуют и микроаэрофилы, которые нуждаются в малых количествах кислорода (некоторые лептоспиры, бруцеллы). Облигатные анаэробы (клостридии столбняка, ботулизма и др.) способны жить и размножаться только в отсутствие свободного кислорода воздуха. Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Так, при анаэробном разложении 1 моль глюкозы энергии выделяется значительно меньше, чем при аэробном дыхании: С 6 Н 12 О 6 - 2С 2 Н 5 ОН + 2СО ,6 кД (31,2 ккал)

Наличие свободного кислорода для облигатных анаэробов является губительным. Это связано с тем, что в присутствии кислорода конечным продуктом окисления органических соединений оказывается перекись водорода. А поскольку анаэробы не обладают способностью продуцировать фермент каталазу, расщепляющую перекись водорода, то она накапливается и оказывает токсическое действие на бактерии. Факультативные анаэробы могут размножаться как при наличии молекулярного кислорода, так и при отсутствии его. К ним относят большинство патогенных и сапрофитных бактерий.

Процессы разложения органических веществ в бескислородных условиях, сопровождающиеся выделением энергии, называют также брожением. В зависимости от участия определенных микроорганизмов и конечных продуктов расщепления углеводов различают несколько типов брожения: спиртовое, осуществляемое дрожжами; молочно- кислое, вызываемое молочно-кислыми бактериями; масляно-кислое, обусловленное масляно-кислыми бактериями и др.

Выделение тепла при дыхании микроорганизмов можно наблюдать при выращивании культур в сосудах, защищенных от потери тепла, температура питательной среды будет постепенно повышаться. С выделением избыточного тепла при дыхании некоторых микроорганизмов связаны процессы самовозгорания торфа, навоза, влажного сена и хлопка. Биохимические механизмы дыхания более подробно изложены в учебниках биологической химии.

ПИГМЕНТЫ МИКРООРГАНИЗМОВ Некоторые микроорганизмы (бактерии, грибы) в процессе обмена веществ образуют красящие вещества пигменты. По химическому составу и свойствам пигменты неоднородны. Они подразделяются на растворимые в воде (синий пигмент пиоцианин, выделяемый синегнойной палочкой); растворимые в спирте и нерастворимые в воде (красный пигмент продигиозан, выделяемый чудесной палочкой); нерастворимые ни в воде, ни в спирте (черные и бурые пигменты дрожжей и плесеней).

Нерастворимые в воде пигменты (липохромы) обычно окрашивают колонии бактерий (например, желтый, золотистый, палевый пигменты стафилококков), а растворимые окрашивают питательную среду (синегнойная палочка). Образование пигментов у микробных клеток происходит на свету при достаточном доступе кислорода и определенном составе питательной среды. Пигментообразование в ряде случаев является стойким признаком микроорганизмов, что позволяет использовать его в качестве теста для идентификации некоторых бактерий (например, стафилококки, синегнойная палочка).

Пигментообразование у микроорганизмов имеет определенное физиологическое значение. Пигменты защищают микробную клетку от природной ультрафиолетовой радиации, принимают участие в процессах дыхания, некоторые обладают антибиотическим действием (продигиозан).

Особый интерес представляет палочки Serratia marcescens, которая образует на хлебе, картофеле и других продуктах, содержащих крахмал, красные колонии, похожие на капли свежей крови.

Светящиеся и ароматобразующие микроорганизмы Среди микроорганизмов (бактерий, грибов) встречаются такие, которые обладают способностью светиться (люминесцировать). Свечение бактерий возникает в результате интенсивных процессов окисления, сопровождающихся выделением энергии. Свечение морской воды, чешуи рыб, тела мелких ракообразных, сгнившего дерева объясняется присутствием на них светящихся бактерий или фотобактерий.

Все светящиеся бактерии относятся к аэробам. Большая часть их видов обитает в морской воде, так как они лучше размножаются при повышенной концентрации соли (галофильные микробы). Могут светиться пауки, муравьи, термиты, живущие в симбиозе с фотобактериями. Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Ночью светятся и грибы, например осенние опенки. Светящиеся бактерии не вызывают процессов гниения, для большинства видов оптимальная температура жизнедеятельности1518 °С. Они хорошо растут на рыбных и мясных субстратах, что и обусловливает свечение мяса, рыбы.

Светящиеся бактерии Vibrio fischeri.

В начале XX века пытались использовать светящиеся бактерии в практических целях, их предлагали применять для «безопасных ламп» в пороховых погребах. Выявлены микроорганизмы, способные вырабатывать ароматические вещества, например уксусно-этиловый, уксусно- амиловый эфиры. Запахи некоторых микробов определяют ароматические свойства вин, молока, масла, сливок, сыров и т. д. Ароматобразующие бактерии широко используют при приготовлении различных пищевых продуктов.

Некоторые микроорганизмы в процессе жизнедеятельности образуют вещества с неприятным запахом (индол, скатол, сероводород), что связано с разложением органических веществ.