Фотоэлектрический эффект был открыт в 1887 году немецким физиком и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Фотоэлектрический эффект.

Презентация:



Advertisements
Похожие презентации
Фото- электрический эффект. Открытие фотоэффекта Фотоэлектрический эффект был открыт в 1887 году немецким физиком и в 1888–1890 годах экспериментально.
Advertisements

ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ Законы фотоэффекта Объяснение фотоэффекта.
Преподаватель физики ПЛ-87: Бердникова Галина Петровна.
Фото- электрический эффект © В.Е. Фрадкин 2004 Из коллекции
ФОТОЭФФЕКТ Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально Г. Герцем.
Презентация уроку Выполнила учитель физики МБОУ СОЩ 17 г.Бийск Алтайского края Иванова Вера Николаевна.
1 2 ЗАВЕРШЕНИЕ КЛАССИЧЕСКОЙ ФИЗИКИ В конце XIX в. многие ученые считали, что развитие физики завершилось по следующим причинам: 1. Больше 200 лет существуют.
ФОТОЭФФЕКТ Выполнил : ученик 11 А класса Романов Артем.
Зарождение квантовой физики («ультрафиолетовая катастрофа») Идея Планка. Открытие фотоэффекта. Опыты Герца. Законы фотоэффекта. Исследования Столетова.
Фотоэффект Фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света. открыт в 1887.
ФОТОЭФФЕКТ Законы фотоэффекта Теория фотоэффекта МБОУ «Пудовская СОШ» Учитель физики Сивиринова О.Н.
Фотоэффект Раздел современной физики Квантовая физика изучает свойства, строение атомов и молекул, движение и взаимодействие микрочастиц.
Вопрос 1 Что называется фотоэффектом? Вопрос 2 Почему электрометр с цинковой пластиной при освещении ультрафиолетовыми лучами: а) разряжается, если цинковая.
1887 г.1890 г.1905 г. Генрих Герц Генрих Герц Александр Григорьевич Столетов Альберт Эйнштейн открытие исследование объяснение.
Квантовая физика Фотоэффект Теория фотоэффекта 11 класс.
Фото- электрический эффект Тема урока: Теория фотоэффекта. Уравнение фотоэффекта.
Фотоэффект Квантовая физика Физика 11 класс. ЗАРОЖДЕНИЕ КВАНТОВОЙ ТЕОРИИ 1.Больше 200 лет существуют законы механики, теория всемирного тяготения. 2.Разработана.
Квантовая физика Фотоэффект Теория фотоэффекта. 2. Кто является основоположником 2. Кто является основоположником квантовой физики? квантовой физики?
1.В чем состояла гипотеза М.Планка? 1.В чем состояла гипотеза М.Планка? 2.Что названо квантами? 2.Что названо квантами? 3. Отчего зависит энергия кванта?
Фотоэффект Столетов Александр Григорьевич Выдающийся русский физик Исследовал свойства ферромагнетиков, несамостоятельный газовый разряд. Опытным.
Транксрипт:

Фотоэлектрический эффект был открыт в 1887 году немецким физиком и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г.

Опыт Г. Герца (1888 г.): при облучении ультрафиолетовыми лучами электродов, находящихся под высоким напряжением, разряд возникает при большем расстоянии между электродами, чем без облучения. Опыт Г. Герца (1888 г.): при облучении ультрафиолетовыми лучами электродов, находящихся под высоким напряжением, разряд возникает при большем расстоянии между электродами, чем без облучения.

1. Цинковую пластину, соединенную с электроскопом, заряжают отрицательно и облучают ультрафиолетовым светом. Она быстро разряжается. Если же ее зарядить положительно, то заряд пластины не изменится.

2. Ультрафиолетовые лучи, проходящие через сетчатый положительный электрод, попадают на отрицательно заряженную цинковую пластину и выбивают из нее электроны, которые устремляются к сетке, создавая фототок, регистрируемый чувствительным гальванометром.

- явление испускания электронов с поверхности металла под действием света. - явление испускания электронов с поверхности металла под действием света. Т. е. свет выбивает ( вырывает ) электроны из металла.

Столетов Александр Григорьевич ( ) Русский физик, научные работы посвящены электромагнетизму, оптике, молекулярной физике, философским вопросам науки. Впервые показал, что при увеличении намагничивающего поля, магнитная восприимчивость железа сначала возрастает, а затем падает, проходя через максимум, осуществил ряд экспериментов для определения величины отношения электромагнитных и электростатических величин, получил значение, близкое к значению скорости света (1876г.). В г. выполнил цикл работ по исследованию явления внешнего фотоэффекта, создал первый фотоэлемент (1888г.), является основоположником количественных методов исследования фотоэффекта, изучал несамостоятельный газовый разряд, исследовал критическое состояние вещества, многое сделал для развития физики в России. В 1872г создал первую физическую лабораторию и исследовательский институт при Московском университете. Количественные закономерности фотоэффекта были установлены А. Г. Столетовым ( ).

Схема экспериментальной установки для изучения фотоэффекта. Катод K Стеклянный вакуумный баллон Двойной ключ для изменения полярности Кварцевое окошко Анод А Источник напряжения U Источник монохроматического света длины волны λ Потенциометр для регулирования напряжения Электроизмерительные приборы для снятия вольтамперной характеристики

Анализ вольт-амперной характеристики. Начиная с некоторого значения напряжения сила тока в цепи перестает изменяться, достигнув насыщения. При следовательно выбитые электроны обладают кинетической энергией. I0I0 Сила тока насыщения прямо пропорциональна числу электронов, выбитых светом за 1 с с поверхности катода:

Анализ вольт-амперной характеристики. При таком значении напряжения сила тока в цепи анода равна нулю. I0I0 Напряжение запирания ( запирающее напряжение ) При U > U з в результате облучения электроны, выбитые из электрода, могут достигнуть противоположного электрода и создать некоторый начальный ток.

Анализ вольт-амперной характеристики. Согласно закону сохранения энергии где m - масса электрона, а υ max - максимальная скорость фотоэлектрона.

Зависимость числа выбитых электронов от светового потока. Световой поток, падающий на фотокатод увеличивается, а его спектральный состав остается неизменным: Световой поток, падающий на фотокатод увеличивается, а его спектральный состав остается неизменным: Ф 2 > Ф 1 Сила тока насыщения и, следовательно, число выбитых светом за 1 с электронов увеличивается: I нас,2 >I нас,1 Значение запирающего напряжения не меняется! ν1= ν2ν1= ν2

Фототок насыщения пропорционален световому потоку, падающему на металл. или или Количество фотоэлектронов, выбиваемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны.

Влияние спектрального состава света При частоте ν = ν min запирающее напряжение равно нулю. При частоте ν < ν min фотоэффект отсутствует. Если частоту света увеличить, то при неизменном световом потоке запирающее напряжение увеличивается, а, следовательно, увеличивается и кинетическая энергия фотоэлектронов.

Кинетическая энергия фотоэлектронов линейно возрастает с частотой света не зависит от интенсивности падающего света.

Красная граница фотоэффекта При < min ни при какой интенсивности волны падающего на фотокатод света фотоэффект не произойдет. Т. к., то минимальной частоте света соответствует максимальная длина волны. При < min ни при какой интенсивности волны падающего на фотокатод света фотоэффект не произойдет. Т. к., то минимальной частоте света соответствует максимальная длина волны. Т.к длина волны больше у красного цвета, то максимальную длину волны (минимальную частоту), при которой еще наблюдается фотоэффект, назвали красной границей фотоэффекта.

Заменяя в приборе материал фотокатода, Столетов установил, что красная граница фотоэффекта является характеристикой данного вещества. Для каждого вещества существует красная граница фотоэффекта, т. е. существует наименьшая частота min, при которой еще возможен фотоэффект.

Количество фотоэлектронов, выбиваемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Кинетическая энергия фотоэлектронов линейно возрастает с частотой света не зависит от интенсивности падающего света. Для каждого вещества существует красная граница фотоэффекта, т. е. существует наименьшая частота min, при которой еще возможен фотоэффект. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > ν min. Количество фотоэлектронов, выбиваемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. Кинетическая энергия фотоэлектронов линейно возрастает с частотой света не зависит от интенсивности падающего света. Для каждого вещества существует красная граница фотоэффекта, т. е. существует наименьшая частота min, при которой еще возможен фотоэффект. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin.

Что не могла объяснить волновая теория света : Безынерционность фотоэффекта. В волновой модели: электрон при взаимодействии с электромагнитной световой волной постепенно накапливает энергию, и только через значительное время вылетит из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Существование красной границы фотоэффекта. В волновой модели: необходимую энергию можно накопить при любой энергии волны. Независимость энергии фотоэлектронов от интенсивности светового потока. Пропорциональность максимальной кинетической энергии частоте света. Безынерционность фотоэффекта. В волновой модели: электрон при взаимодействии с электромагнитной световой волной постепенно накапливает энергию, и только через значительное время вылетит из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Существование красной границы фотоэффекта. В волновой модели: необходимую энергию можно накопить при любой энергии волны. Независимость энергии фотоэлектронов от интенсивности светового потока. Пропорциональность максимальной кинетической энергии частоте света.

Свет имеет прерывистую дискретную структуру. Электромагнитная волна состоит из отдельных порций – квантов, впоследствии названных фотонами. Квант поглощается электроном целиком. Энергия кванта передается электрону. (Один фотон выбивает один электрон.) Энергия каждого фотона определяется формулой Планка W = E = hν, где h – постоянная Планка.

На основании закона сохранения энергии: На основании закона сохранения энергии: Смысл уравнения Эйнштейна: Смысл уравнения Эйнштейна: энергия кванта тратится на работу выхода электрона из металла и сообщение электрону кинетической энергии. энергия кванта тратится на работу выхода электрона из металла и сообщение электрону кинетической энергии. В этом уравнении: ν - частота падающего света, m - масса электрона (фотоэлектрона), υ - скорость электрона, h - постоянная Планка, A - работа выхода электронов из металла.

Работа выхода - это характеристика материала Она показывает, какую работу должен совершить электрон, чтобы преодолеть поверхностную разность потенциалов и выйти за пределы металла. Работа выхода обычно измеряется в электронвольтах ( эВ ). Работа выхода - это характеристика материала Она показывает, какую работу должен совершить электрон, чтобы преодолеть поверхностную разность потенциалов и выйти за пределы металла. Работа выхода обычно измеряется в электронвольтах ( эВ ).

Доказательство законов фотоэффекта Число фотонов N ф равно числу электронов N э. Число фотонов N ф равно числу электронов N э. Энергия монохроматического света Следовательно, Количество фотоэлектронов, выбиваемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны.

Доказательство законов фотоэффекта Из уравнения Эйнштейна: Из уравнения Эйнштейна: Кинетическая энергия фотоэлектронов линейно возрастает с частотой света не зависит от интенсивности падающего света.

Доказательство законов фотоэффекта Минимальная частота света соответствует W к =0, то или. то или. Для каждого вещества существует красная граница фотоэффекта, т. е. существует наименьшая частота min, при которой еще возможен фотоэффект. Эти формулы позволяют определить работу выхода A электронов из металла.

Среди металлов наименьшей работой выхода обладают щелочные металлы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λ кр 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах, предназначенных для регистрации видимого света.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν, равен отношению постоянной Планка h к заряду электрона e: Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены Р. Милликеном (1914 г.) и дали хорошее согласие со значением, найденным Планком.