Элементы содержания, проверяемые на ЕГЭ 2010: 1. Внутренняя энергия 2. Тепловое равновесие 3. Теплопередача. Виды теплопередачи 4. Количество теплоты.

Презентация:



Advertisements
Похожие презентации
Тепловые двигатели. Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. В 17 в. был изобретён тепловой.
Advertisements

Презентация к уроку по физике (10 класс) по теме: Основы термодинамики
Основы термодинамики Основы термодинамики Учитель физики МБОУ СОШ 1 Архипова Ольга Леонидовна.
Основы термодинамики Выполнил студент 2-го курса Фалилеев Олег.
ТЕРМОДИНАМИКА Внутренняя энергия Термодинамика – раздел физики, изучающий возможности использования внутренней энергии тел для совершения механической.
Подготовка к ЕГЭ ЧАСТЬ А задания А 10 Автор презентации: Бахтина Ирина Владимировна, учитель физики МБОУ «СОШ 3» г. Новый Оскол Белгородской обл. Р V 0.
Основы термодинамики Урок физики в 10 классе. 1.Какое движение называют тепловым? называют тепловым? 2.Как связано движение молекул с температурой тела?
Обобщающий урок по теме « термодинамика ». Цель урока : повторить основные понятия темы « Термодинамика », продолжить формирование умений описывать термодинамические.
КРУГОВЫЕ ПРОЦЕССЫ Цикл Карно Тепловые машины Холодильные машины.
Учитель физики: Мурнаева Екатерина Александровна.
Учитель: Попова И.А. МОУ СОШ 30 г. Белово Белово 2010 Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии Подготовка к.
Термодинамика Термодинамика (от греч. Therme тепло + Dynamis сила) раздел физики, изучающий соотношения и превращения теплоты и других форм энергии.
Применение первого закона термодинамики к изопроцессам. Урок физики в 10 классе.
ВНУТРЕННЯЯ ЭНЕРГИЯ. Цель Изучить понятие внутренней энергии и ее связь с кинетической и потенциальной энергиями, познакомиться с различными способами.
Выполнила: уч-ца 10 «в» класса Кичикова Элистина.Термодинамика – теория тепловых процессов, в которой не учитывается молекулярное строение тел. Термодинамика.
КРУГОВЫЕ ПРОЦЕССЫ. ТЕПЛОВЫЕ МАШИНЫ 1.Круговые обратимые и необратимые процессы 2. Тепловые машины 3. Цикл Карно (обратимый) 4. Работа и КПД цикла Карно.
Тепловые двигатели. Термодинамические циклы. Цикл Карно ГОУ СОШ 625 Н. М. Турлакова.
Внутренняя энергия тела 1) Кинетическая энергия движения частиц тела 2) Потенциальная энергия их взаимодействия 3) Внутриатомная энергия.
Тепловой двигатель.. Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая.
Круговым называется процесс, при котором термодинамическая система, пройдя через ряд состояний, возвращается в исходное состояние Круговые процессы.
Транксрипт:

Элементы содержания, проверяемые на ЕГЭ 2010: 1. Внутренняя энергия 2. Тепловое равновесие 3. Теплопередача. Виды теплопередачи 4. Количество теплоты. Удельная теплоемкость вещества 5. Первый закон термодинамики 6. Второй закон термодинамики 7. КПД тепловой машины 8. Принципы действия тепловых машин 9. Тепловые двигатели и охрана окружающей среды

Термодинамика – это наука о тепловых явлениях. Термодинамика рассматривает изолированные системы тел, находящиеся в состоянии термодинамического равновесия - в таких системах прекратились все наблюдаемые макроскопические процессы. Основное свойство термодинамически равновесной системы - выравнивание температуры всех ее частей; Термодинамический процесс - переход из одного в другое равновесное состояние Процессы, состоящие из последовательности равновесных состояний, называются квазистатическими.

Учитывая уравнение состояния идеального газа i – степень свободы Внутренняя энергия вещества складывается из кинетической энергии всех атомов и молекул и потенциальной энергии их взаимодействия друг с другом; Внутренняя энергия U тела однозначно определяется макроскопическими параметрами, характеризующими состояние тела; Внутренняя энергия U тела зависит наряду с температурой T также и от объема V; Внутренняя энергия является функцией состояния; U = U(T,V) Внутренняя энергия тела может изменяться, если действующие на него внешние силы совершают работу (положительную или отрицательную). i = 3 для одноатомного газа; i = 5 для двухатомного газа; i = 6 для многоатомного газа;

Если газ подвергается сжатию в цилиндре под поршнем, то внешние силы совершают над газом некоторую положительную работу A`; Если объем газа изменился на малую величину ΔV, то газ совершает работу pSΔx = pΔV, где p – давление газа, S – площадь поршня, Δx – его перемещение; Работа численно равна площади под графиком процесса на диаграмме (p, V). Величина работы зависит от того, каким путем совершался переход из начального состояния в конечное. Три различных пути перехода из состояния (1) в состояние (2). Во всех трех случаях газ совершает разную работу, равную площади под графиком процесса.

При тепловом контакте две системы приходят в состояние теплового равновесия. Две системы находятся в состоянии теплового равновесия, если при контакте через диатермическую перегородку параметры состояния обеих систем не изменяются;

ТЕПЛОПЕРЕДАЧА (или теплообмен) - один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы. Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене. Это является частным случаем закона сохранения энергии.

Теплопроводность - перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела. Не сопровождается переносом вещества! Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов. Теплопроводность различных веществ разная. Металлы обладают самой высокой теплопроводностью, причем у разных металлов теплопроводность отличается. Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

Конвекция - вид теплопередачи, при котором энергия передается потоками (струями) вещества. Характерна для жидкостей и газов.

Излучение - вид теплопередачи, при котором энергия передается с помощью электромагнитных волн (преимущественно инфракрасного диапазона). Может происходить в вакууме

Удельная теплоемкость С это количество теплоты, которое получает или отдает тело массой 1 кг при изменении ЕГО ТЕМПЕРАТУРЫ НА 1 К. Энергия, переносимая от одной системы к другой только за счет разницы в температурах этих систем, называется количеством теплоты

Количество теплоты, необходимое для плавления (выделившаяся при кристаллизации) тела Количество теплоты, необходимое для нагревания (выделившаяся при остывании) тела Энергия, переносимая от одной системы к другой только за счет разницы в температурах этих систем, называется количеством теплоты Количество теплоты, необходимое для парообразования (выделившаяся при конденсации) тела Нагревание Остывание Плавление Кристаллизация Испарение Конденсация

Обмен энергией между термодинамической системой и окружающими телами в результате теплообмена и совершаемой работы Важным следствием первого закона термодинамики является утверждение о невозможности создания машины, способной совершать полезную работу без потребления энергии извне и без каких-либо изменений внутри самой машины. Такая гипотетическая машина получила название вечного двигателя (perpetuum mobile) первого рода. Q = ΔU + A I закон термодинамики: Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами

I закон термодинамики: Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы над внешними телами Q = ΔU + A Адиабатический процесс - процесс, протекающий в отсутствие теплообмена с окружающими телами

Первая формулировка (Клаузиус, 1850 год): невозможен процесс, при котором тепло самопроизвольно переходит от тел менее нагретых к телам более нагретым. Третья формулировка (Оствальд, 1901 год): невозможен вечный двигатель второго рода. Вторая формулировка (Томсон, 1851 год) невозможен круговой процесс, единственным результатом которого было бы производство работы за счет уменьшения внутренней энергии теплового резервуара. Многие тепловые процессы могут протекать только в одном направлении. Такие процессы называются необратимыми. Обратимыми процессами называют процессы перехода системы из одного равновесного состояния в другое, которые можно провести в обратном направлении через ту же последовательность промежуточных равновесных состояний.

Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние. Круговой процесс на диаграмме (p, V). abc – кривая расширения, cda – кривая сжатия. Работа A в круговом процессе равна площади фигуры abcd. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником.

Q = Q 1 – |Q 2 | = А Работа A, совершаемая рабочим телом за цикл, равна полученному за цикл количеству теплоты Q. Отношение работы A к количеству теплоты Q 1, полученному рабочим телом за цикл от нагревателя, называется коэффициентом полезного действия η тепловой машины: Q 1 - количество теплоты, которое рабочее тело получает от нагревателя; Q 2 - количество теплоты, которое рабочее тело отдает холодильнику Полное количество теплоты Q, полученное рабочим телом за цикл, равно В 1824 году французский инженер С. Карно рассмотрел круговой процесс, состоящий из двух изотерм и двух адиабат. Цикл Карно Изотерма Адиабата Изотерма Адиабата С. Карно выразил коэффициент полезного действия цикла через температуры нагревателя T 1 и холодильника T 2 Цикл Карно – наиболее эффективный круговой процесс из всех возможных при заданных температурах нагревателя и холодильника: η Карно = η max

Структура тепловых машин Холодильные машины

Факторы негативного влияния тепловых двигателей на окружающую среду: 1. загрязнение атмосферы 2. шумовые загрязнения 3. проблемы утилизации отработанных автомобилей 4. загрязнение почвы 5. повышение температуры атмосферы

Отрицательное влияние тепловых машин на окружающую среду связано с действием различных факторов. 1. при сжигании топлива используется кислород из атмосферы, вследствие чего содержание кислорода в воздухе постепенно уменьшается. 2. сжигание топлива сопровождается выделением в атмосферу углекислого газа. 3. при сжигании угля и нефти атмосфера загрязняется азотными и серными соединениями, вредными для здоровья человека. 4. Автомобильные двигатели ежегодно выбрасывают в атмосферу два-три тонн свинца.

Один из путей уменьшения путей загрязнения окружающей среды- использованием в автомобилях вместо карбюраторных бензиновых двигателей дизелей, в топливо которых не добавляют соединения свинца. Перспективными являются разработки автомобилей, в которых вместо бензиновых двигателей применяются электродвигатели или двигатели, использующие в качестве топлива водород. Согласно законам термодинамики производство электрической и механической энергии в принципе не может быть осуществлено без отвода в окружающую среду значительных количеств теплоты. Это не может не приводить к постепенному повышению средней температуры на земле. Одно из направлений, связанное с охраной окружающей среды, это увеличение эффективности использования энергии, борьба за её экономию.

ЕГЭ (Демо, КИМ)

1.газ получил извне количество теплоты, равное 5 Дж 2.газ получил извне количество теплоты, равное 55 Дж 3.газ отдал окружающей среде количество теплоты, равное 5 Дж 4.газ отдал окружающей среде количество теплоты, равное 55 Дж

В тепловом двигателе газ получил 300 Дж тепла и совершил работу 36 Дж. Как изменилась внутренняя энергия газа? 1.уменьшилась на 264 Дж 2.уменьшилась на 336 Дж 3.увеличилась на 264 Дж 4.увеличилась на 336 Дж

A = S = (6-4)(4-2)10 5 = Дж В результате некоторого процесса газ перешел из состояния 1 в состояние 2. Какую работу совершили при этом над газом? Дж Дж Дж Дж

Фарфоровую статуэтку массой 0,2 кг обжигали при температуре 1500 К и выставили на стол, где она остыла до температуры 300 К. Какое количество тепла выделила статуэтка при остывании? 1.2, Дж 2.3, Дж 3.6, Дж 4.2, Дж

Внутренняя энергия гири увеличивается, если 1.гирю поднять на 2 м 2.гирю нагреть на 2 о С 3.увеличить скорость гири на 2 м/с 4.подвесить гирю на пружине, которая растянется на 2 см

Тепловой двигатель за цикл получает от нагревателя количество теплоты, равное 3 кДж и отдает холодильнику количество теплоты, равное 2,4 кДж. КПД двигателя равен 1.20% 2.25% 3.80% 4.120%

Температура кристаллического тела при плавлении не изменяется. Внутренняя энергия вещества при плавлении 1.Увеличивается 2.Не изменяется 3.Уменьшается 4.Может увеличиваться или уменьшаться в зависимости от кристаллической структуры тела

Работа газа за термодинамический цикл равна кДж кДж кДж кДж

При охлаждении твердого тела массой m температура тела понизилась на T. По какой из приводимых ниже формул следует рассчитывать количество отданной телом теплоты Q? с – удельная теплоемкость вещества.

Внутренняя энергия идеального газа при его охлаждении 1.увеличивается 2.уменьшается 3.увеличивается или уменьшается в зависимости от изменения объема 4.не изменяется

Тепловая машина с КПД 40 % получает за цикл от нагревателя 100 Дж. Какое количество теплоты машина отдает за цикл холодильнику? 1.40 Дж 2.60 Дж Дж Дж

Теплопередача всегда происходит от тела с 1.большим запасом количества теплоты к телу с меньшим запасом количества теплоты 2.большей теплоемкостью к телу с меньшей теплоёмкостью 3.большей температурой к телу с меньшей температурой 4.большей теплопроводностью к телу с меньшей теплопроводностью

В каком из процессов перехода идеального газа из состояния 1 в состояние 2, изображенном на рV- диаграмме (см. рисунок), газ совершает наибольшую работу? 1.А 2.Б 3.В 4.во всех трех процессах газ совершает одинаковую работу

1.0,75 кДж/(кг К) 2.1 кДж/(кг К) 3.1,5 кДж/(кг К) 4.3 кДж/(кг К)

1.увеличится или уменьшится в зависимости от давления газа в сосуде 2.уменьшится при любых условиях 3.увеличится при любых условиях 4.не изменится

От каких макроскопических параметров зависит внутренняя энергия тела? 1. от температуры и объема тела 2. от температуры и скорости движения тела 3. от температуры тела и расстояния от тела до поверхности Земли 4. только от температуры тела

При передаче твердому телу массой m количества теплоты Q температура тела повысилась на ΔТ. Какое из приведенных ниже выражений определяет удельную теплоемкость вещества этого тела?

1.100 % 2.88 % 3.60 % 4.40 %

Тепловая машина за цикл работы получает от нагревателя 100 Дж и отдает холодильнику 40 Дж. Чему равен КПД тепловой машины? 1)60%2)40%3)29%4)43%

На рисунке приведен график зависимости объема идеального одноатомного газа от давления в процессе 1 – 2. Внутренняя энергия газа при этом увеличилась на 300 кДж. Количество теплоты, сообщенное газу в этом процессе, равно 1. 0 кДж кДж кДж кДж

Тепловая машина с КПД 60% за цикл работы получает от нагревателя количество теплоты, равное 100 Дж. Какую полезную работу машина совершает за цикл? Дж Дж Дж Дж

Внутренняя энергия газа в запаянном несжимаемом сосуде определяется главным образом 1. движением сосуда с газом 2. хаотическим движением молекул газа 3. взаимодействием молекул газа с Землей 4. действием внешних сил на сосуд с газом

На диаграмме (см. рисунок) показан процесс изменения состояния идеального одноатомного газа. Газ отдает 50 кДж теплоты. Работа внешних сил равна 1. 0 кДж кДж кДж кДж

Одноатомный идеальный газ в количестве 4 молей поглощает количество теплоты 2 кДж. При этом температура газа повышается на 20 К. Работа, совершаемая газом в этом процессе, равна 1.0,5 кДж 2.1,0 кДж 3.1,5 кДж 4.2,0 кДж

Тепловая машина имеет КПД 25%. Средняя мощность передачи теплоты холодильнику в ходе ее работы составляет 3 кВт. Какое количество теплоты получает рабочее тело машины от нагревателя за 10 с? 1.0,4 Дж 2.40 Дж Дж 4.40 кДж

Какую работу совершает газ при переходе из состояния 1 в состояние 3 (см. рисунок)? 1.10 кДж 2.20 кДж 3.30 кДж 4.40 кДж

В тепловой машине температура нагревателя 600 K, температура холодильника на 200 K меньше, чем у нагревателя. Максимально возможный КПД машины равен

При каком из перечисленных ниже процессов остается неизменной внутренняя энергия 1 моль идеального газа? 1.при изобарном сжатии 2.при адиабатном сжатии 3.при адиабатном расширении 4.при изотермическом расширении

Какую работу совершает газ при переходе из состояния 1 в состояние 3 (см. рисунок)? 1.10 кДж 2.20 кДж 3.30 кДж 4.40 кДж

Температура нагревателя идеального теплового двигателя Карно 227 ºС, а температура холодильника 27 ºС. Рабочее тело двигателя совершает за цикл работу, равную 10 кДж. Какое количество теплоты получает рабочее тело от нагревателя за один цикл? 1.2,5 Дж 2.11,35 Дж 3.11,35 кДж 4.25 кДж

/ Берков, А.В. и др. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010, Физика [Текст]: учебное пособие для выпускников. ср. учеб. заведений / А.В. Берков, В.А. Грибов. – ООО "Издательство Астрель", – 160 с. Касьянов, В.А. Физика, 11 класс [Текст]: учебник для общеобразовательных школ / В.А. Касьянов. – ООО "Дрофа", – 116 с. Класс!ная физика для любознательных. ТЕПЛОВЫЕ ЯВЛЕНИЯ / Момент силы. ВикипедиЯ [текст, рисунок]/ D0%BB%D1%8B Мякишев, Г.Я. и др. Физика. 11 класс [Текст]: учебник для общеобразовательных школ / учебник для общеобразовательных школ Г.Я. Мякишев, Б.Б. Буховцев. –" Просвещение ", – 166 с. Открытая физика [текст, рисунки]/ Подготовка к ЕГЭ / Силы в механике/ Тепловое равновесие. Температура. Количество теплоты и теплопередача/ Тепловые двигатели / 4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D0%B8/%D0%A3%D1%87%D0%B5%D0%B1%D0 %BD%D1%8B%D0%B9_%D0%BF%D1%80%D0%BE%D0%B5%D0%BA%D1%82_%D0%A2%D0%B5%D0%BF%D0%B B%D0%BE%D0%B2%D1%8B%D0%B5_%D0%B4%D0%B2%D0%B8%D0%B3%D0%B0%D1%82%D0%B5%D0%BB%D 0%B8_%D0%B8_%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B0_%D0%BE%D0%BA%D1%80%D1%83%D0 %B6%D0%B0%D1%8E%D1%89%D0%B5%D0%B9_%D1%81%D1%80%D0%B5%D0%B4%D1%8B ТЕПЛОПЕРЕДАЧА Три закона Ньютона / Федеральный институт педагогических измерений. Контрольные измерительные материалы (КИМ) Физика //[Электронный ресурс]// Используемая литература