Основы томографии и рентгенографии ВЫПОЛНИЛА: СТУДЕНТКА II КУРСА ГРУППЫ 21 Ф КВАШИЛАВA АЛИНА ПРЕПОДАВАТЕЛЬ: КОВАЛЬСКАЯ АННА СЕРГЕЕВНА.

Презентация:



Advertisements
Похожие презентации
ГБОУ СПО «Ейский медицинский колледж» Работу выполнила: Студентка 104 (2) группы Слепцова Инна.
Advertisements

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ. Шкала электромагнитных волн показывает, что рентгеновские лучи занимают спектральную область между ультрафиолетовым излучением.
Лекционный курс «Физические основы измерений и эталоны» Раздел ИССЛЕДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ ПОТОКОВ ИЗЛУЧЕНИЙ Тема МЕТОДЫ КОМПЬЮТЕРНОЙ РЕНТГЕНОВСКОЙ ТОМОГРАФИИ.
Рентгеноскопия ВЫПОЛНИЛА ХЛЫСТОВА А.В. 16 ЛЛ 5. Принцип получения С момента открытия рентгеновского излучения для рентгеноскопии применялся флюоресцентный.
Рентгеновские лучи. Вильгельм Конрад Рентген ( )
Лучевая диагностика
Рентгеновская и позитронная томография Работу подготовила: Мануйлова В.Ю. группа У04-04.
Дембовская Марина 12 а. Это передача изображения объекта на некоторое расстояние ( обычно со звуковым сопровождением ).
Методы рентгенологической диагностики Выполнила: Карибаева А.
Понятие о телевидении Телевидение-это передача изображения объекта на некоторое расстояние (обычно со звуковым сопровождением). Работу выполнил Ученик.
Физика 11 класс. Инфракрасное излучение - не видимое глазом электромагнитное излучение в пределах длин волн от 1-2 мм до 0,74 мкм. Оптические свойства.
«Современные сестринские технологии» Тема: Роль медсестры в лечений и уходе за пациентами их подготовке к различным видам обследований Подготовила слушатель:
Министерство образования и науки Российской Федерации Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального.
Тема: Рентгеновские лучи. Применение рентгеноструктурного анализа к изучению строения гемоглобина. Выполнила Демидова Марина,11»З» класс Государственное.
МОУ СОШ 10 п.Раздольное Учитель Боярская Л.В.. Это электромагнитное излучение с длиной волны от 0,5 до 600 нм. Это электромагнитное излучение с длиной.
Приемники излучения с внешним фотоэффектом АННОТАЦИЯ МИХАЛЕВ А.С. старший преподаватель кафедры Физики им. В.А. Фабриканта Московского энергетического.
Электрический ток в различных средах. ВОПРОСЫ: 1.Вакуум. Явление термоэлектронной эмиссии 2.Вакуумный диод и триод 3.Электронно – лучевая трубка, кинескоп.
Применение фотоэффекта
АО "Медицинский университет Астана" Кафедра внутренних болезней интернатуры СРС КТ ОГК с контрастированием Елубаева Самал 640 ВБ г.Астана, 2017 г.
Транксрипт:

Основы томографии и рентгенографии ВЫПОЛНИЛА: СТУДЕНТКА II КУРСА ГРУППЫ 21 Ф КВАШИЛАВA АЛИНА ПРЕПОДАВАТЕЛЬ: КОВАЛЬСКАЯ АННА СЕРГЕЕВНА.

СОДЕРЖАНИЕ: Основы томографии и рентгенографии История открытия метода Устройство рентгеновской установки как части томографии Источник и приём рентгеновского излучения Развитие компьютерной томографии Получение компьютерной томографии Области применения и преимущества цифровых систем

ОСНОВЫ ТОМОГРАФИИ И РЕНТГЕНОГРАФИИ Рентгенологический метод - это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгенографuя - способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения.

ОСНОВЫ ТОМОГРАФИИ И РЕНТГЕНОГРАФИИ Томография - послойная рентгенография. При томографии, благодаря движению во время съемки с определенной скоростью рентгеновской трубки на пленке получается резким изображение только тех структур, которые расположены на определенной, заранее заданной глубине. Тени органов и образований, расположенных на меньшей или большей глубине, получаются «смазанными» и не накладываются на основное изображение. Томография облегчает выявление опухолей, воспалительных инфильтратов и других патологических образований.

ИСТОРИЯ ОТКРЫТИЯ МЕТОДА Идея компьютерной томографии (КТ) родилась в далекой Южно-Африканской Республике у физика А. Кормака. В 1963 г. он опубликовал статью о возможности компьютерной реконструкции изображения мозга. Спустя 7 лет этим занялась группа инженеров английской фирмы электромузыкальных инструментов во главе с г. Хаунсфилдом. Время сканирования первого объекта (мозг, консервированный в формалине) на созданной ими экспериментальной установке составило 9 ч. Уже в 1972 Г. была произведена первая томограмма женщине с опухолевым поражением мозга. 19 апреля 1972 г. на конгрессе Британского радиологического института Г. Хаунсфилд и врач Дж. Амброус выступили с сенсационным сообщением «Рентгенология проникает в мозг». В 1979 г. Г. Хаунсфилд был удостоен Нобелевской премии. Г. Хаунсфилд

УСТРОЙСТВО РЕНТГЕНОВСКОЙ УСТАНОВКИ КАК ЧАСТИ ТОМОГРАФИИ Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), прео6разователя изображения и врача- рентгенолога. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшее излучение, а преобразователь строит видимый световой образ, который воспринимает врач.

ИСТОЧНИК И ПРИЁМ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В состав типового рентгенодиагностического аппарата входят питающее устройство, пульт управления, штатив и рентгеновская трубка. Она-то, собственно, и является источником излучения. Установка получает питание из сети в виде переменного тока низкого напряжения. В высоковольтном трансформаторе сетевой ток преобразуется в переменный ток высокого напряжения - от 40 до 150 кВ. Из вторичной обмотки трансформатора переменный ток поступает в систему выпрямителей, превращающих его в выпрямленный ток, идущий в одном направлении. Высоковольтный выпрямленный ток подают на рентгеновскую трубку, которая генерирует peнтгеновское излучение. Трубка закреплена на штативе. На нем же располагается экранно-снимочное устройство. Выбор и регулировка технических условий осуществляются автоматически с помощью микропроцессорной техники. В некоторых моделях телевизионный монитор и пульт управления вынесены в соседнее помещение, откуда врач и ведет исследование.

ИСТОЧНИК И ПРИЁМ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Источник

ИСТОЧНИК И ПРИЁМ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Прием. В рентгеновских установках используют различные датчики и преобразователи изображения. Целесообразно выделить 5 типов приемников: рентгеновскую пленку, полупроводниковую фоточувствительную пластину, флюоресцирующий экран, рентгеновский электронно-оптический преобразователь, дозиметрический счетчик. На них соответственно построены 5 общих методов рентгенологического исследования: рентгенография, электрорентгенография, рентгеноскопия, рентгенотелевизионная рентгеноскопия и дигитальная рентгенография (В том числе компьютерная томография).

ИСТОЧНИК И ПРИЁМ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Приём

ИСТОЧНИК И ПРИЁМ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

РАЗВИТИЕ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ Изобретение рентгеновской томографии с обработкой получаемой информации на ЭВМ произвело переворот в области получения изображения в медицине. Аппарат, изготовленный и опробованный группой инженеров английской фирмы «EMI», получил название ЭМИ-сканера-томогроф I поколения.

РАЗВИТИЕ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ Вторым этапом в становлении нового метода исследования был выпуск к 1974 г. компьютерных томографов, содержащих несколько детекторов. После поступательного движения, которое производилось быстрее, чем у аппаратов I поколения, трубка с детекторами делала поворот на 3-10 о, что способствовало ускорению исследования, уменьшению лучевой нагрузки на пациента и улучшению качества изображения Вид томографа I и II поколения

РАЗВИТИЕ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ Получение качественного изображения среза тела человека на любом уровне стало возможным после разработки в гг. компьютерных томографов III поколения. Отличие их заключалось в том, что было исключено поступательное движение системы трубка-детекторы, увеличены диаметр зоны исследования до см и первичная матрица компьютера. Это привело к тому, что одну томограмму стало возможным получить за 3-5 секунд при обороте системы трубка-детекторы на 360 о. Качество изображения значительно улучшилось и стало возможным обследование внутренних органов.

РАЗВИТИЕ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ С 1979 г. некоторые ведущие фирмы начали выпускать компьютерные томографы IV поколения. Детекторы ( шт.) в этих аппаратах расположены по кольцу и не вращаются. Движется только рентгеновская трубка, что позволяет уменьшить время получения томограммы до 1-1,5 секунды при повороте трубки на 360 о. Это, а также сбор информации под разными углами увеличивает объем получаемых сведений при уменьшении затрат времени на томограмму.

РАЗВИТИЕ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ В 1986 г. произошел качественный скачок в аппаратостроении для рентгеновской компьютерной томографии. Фирмой «Иматрон» выпущен компьютерный томограф V поколения, работающий в реальном масштабе времени. Он содержит 200 источников и 5000 приемников рентгеновского света, а время получения одного изображения-5 млсек.

ПОЛУЧЕНИЕ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ Получение изображения происходят следующим образом: рентгеновская трубка в режиме излучения «обходит» голову по дуге 240 0, останавливаясь через каждые 3 0 этой дуги и делая продольное перемещение. На одной оси с рентгеновским излучателем закреплены детекторы – кристаллы йодистого натрия, преобразующие ионизирующее излучение в световое. Последнее попадает на фотоэлектронные умножители, превращающие эту видимую часть в электрические сигналы. Электрические сигналы подвергаются усилению, а затем преобразованию в цифры, которые вводят в ЭВМ. Рентгеновский луч, пройдя через среду поглощения, ослабляется пропорционально плотности тканей, встречающихся на его пути, и несет информацию о степени его ослабления в каждом положении сканирования. Интенсивность излучения во всех проекциях сравнивается с величиной сигнала, поступающего с контрольного детектора, регистрирующего исходную энергию излучения сразу же на выходе луча из рентгеновской трубки.

ПРЕИМУЩЕСТВА ЦИФРОВЫХ СИСТЕМ К преимуществам цифровых рентгенографических систем относятся следующие четыре фактора: 1.цифровое отображение изображения; 2. пониженная доза облучения; 3. цифровая обработка изображений; 4.цифровое хранение и улучшение качества изображений.

ОБЛАСТИ ПРИМЕНЕНИЯ Особенная ценность применения цифровой рентгенографии заключается в возможности полного отказа от рентгеновской пленки и связанного с ней фотохимического процесса. Это делает рентгенологическое исследование экологически чище, а хранение информации в цифровом виде позволяет создать легкодоступные рентгеновские архивы. Новые количественные формы обработки информации открывают широкие возможности стандартизации получения изображений, приведения их к стандарту качества в момент получения и при отсроченных повторных исследованиях. Немаловажна открывающаяся возможность передачи изображения на любые расстояния при помощи средств компьютерных коммуникаций.