Регистрация космических лучей на поверхности Земли. Изучение широких атмосферных ливней Школьный проект Часть 1.

Презентация:



Advertisements
Похожие презентации
Итоги года 1. Образовательная задача : осуществления опыта реализации настоящего исследования в области современной физики с участием школьных учеников.
Advertisements

ПРОСТРАНСТВЕННО-ВРЕМЕННОЕ РАСПРЕДЕЛЕНИЕ ЯДЕРНЫХ ЛИВНЕЙ, ОБРАЗОВАННЫХ КОСМИЧЕСКИМ ИЗЛУЧЕНИЕМ СВЕРХВЫСОКИХ ЭНЕРГИЙ Р.У.Бейсембаев (1), Е.А.Бейсембаева (1),
Космические лучи Посланцы из неведомых краёв. Космические лучи были открыты около ста лет назад. Тогда они порядком озадачили астрономов. Было непонятно,
Калибровка Е-Е детекторов для экспериментов на внутренней мишени Нуклотрона Туманов А.Е. и др. МИРЭА, Москва, Россия Работа выполнена в ЛФВЭ ОИЯИ, Россия.
В 1833 году М. Фарадей установил, что ток в растворе это упорядоченное движение заряженных частиц – ионов. Фарадей определил минимальный заряд иона, который.
Дипломная работа Афанасьева Андрея Анатольевича Научный руководитель: к.ф.-м.н., доцент Широков Евгений Вадимович Акустические методы регистрации нейтрино.
20 декабря 2007 г. Исследование космических лучей на высотах гор В.П.ПавлюченкоВ.С.Пучков.
25 ноября 2005 г. Проект «Исследование космических лучей на высотах гор» С.А.Славатинский В.П.Павлюченко Физический институт им. П.Н.Лебедева РАН.
Основные понятия. Микаев З. Сегодня каждый день множество людей открывает для себя существование глобальных компьютерных сетей, объединяющих компьютеры.
Откуда берутся искры. Ваши вещи бьются током??? Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является.
ПРОЕКТ «Исследование космических лучей на высотах гор» (АДРОН-М) В.П.Павлюченко В.С.Пучков Физический институт им. П.Н.Лебедева РАН 21 декабря 2006.
Компьютерные сети Компьютерные телекоммуникации. 2 В настоящее время персональные компьютеры, находящиеся чуть ли не в каждом доме и практически в каждой.
6 июля 2010 г. Наблюдение излучения Вавилова- Черенкова и заряженных частиц ШАЛ под большими зенитными углами Р.У. Бейсембаев, Ю.Н. Вавилов, М.И. Вильданова,
МНОГООБРАЗИЕ И ЕДИНСТВО МИРА 1. Структурные уровни материи 2. Элементарные частицы, фундаментальные частицы 3. Атомное ядро 4. Молекулы и реакционная способность.
Ю.В.Стенькин, В.И.Волченко, Д.Д.Джаппуев, А.У.Куджаев, О.И.Михайлова Институт ядерных исследований Российской академии наук.
Синхротронное излучение в диагностике наносистем 4-й курс 8-й семестр 2007/2008 Лекция 3.
Компьютерные телекоммуникации Компьютерные телекоммуникации.
Основы электродинамики электростатика. Объект изучения электрические поля, создаваемые электрическими зарядами магнитные поля, создаваемые токами.
Программа интегрированного элективного курса по физике и химии « Строение атома» ( 34 часа) ( 34 часа) Авторы – составители: Авторы – составители: И. В.
Адронные калориметры установки ФОДС25 ноября 2009 г. 1 АДРОННЫЕ КАЛОРИМЕТРЫ ФОДС А.А. Волков, А.Ю. Калинин, А.В. Кораблёв, А.Н. Криницын, В.И. Крышкин,
Транксрипт:

Регистрация космических лучей на поверхности Земли. Изучение широких атмосферных ливней Школьный проект Часть 1

Инициаторы Янсон Эдуард Евгеньевич (МИФИ) тел mail Богданов Алексей Георгиевич (МИФИ) тел mail

Космические лучи Космические лучи – обычные элементарные частицы и ядра атомов, образовавшиеся и ускоренные до высоких энергий в глубинах Вселенной. Космические лучи были открыты в 1912 г. австрийским физиком Виктором Гессом. С тех пор было сделано много открытий, связанных с космическим излучением, но остаётся ещё и немало загадок. Физика космических лучей изучает: –процессы, приводящие к возникновению и ускорению космических лучей; –частицы космических лучей, их природу и свойства; –явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.

Широкие атмосферные ливни В результате взаимодействия с ядрами атомов атмосферы первичные космические лучи (в основном протоны) создают большое число вторичных частиц – пионов, протонов, нейтронов, мюонов, электронов, позитронов и фотонов. Эти частицы распадаются или, в свою очередь, взаимодействуют, образуя другие частицы. Таким образом возникает каскад из большого числа вторичных частиц, который называется широким атмосферным ливнем. Ливни частиц были открыты в 1938 г. французским физиком Пьером Оже Существуют достаточно простые виртуальные и экспериментальные инструменты для изучения частиц космических лучей.

Подобные проекты Сейчас во многих странах быстро развиваются сети детекторов для регистрации частиц космических лучей с привлечением школьников и учителей.

North American Large area Time coincidence Arrays CHICOS – California High school Cosmic ray ObServatory. Детекторы космических лучей около Chaminade Middle School. Коллаборация групп экспериментаторов из Канады и США, занимающихся исследованиями в области физики космических лучей высоких энергий

SEASA - Stockholm Educational Air Shower Array Детекторы космических лучей на крыше AlbaNova University Centre, Швеция, Стокгольм Сцинтилляционные детекторы HiSPARC, Нидерланды

Berkeley Lab Cosmic Ray Detector $

Российские проекты? Научно-образовательнй космический проект Московского государственного университета им. М. В. Ломоносова МГУ-250 приурочен к его 250-летию. Его основная задача – научная и образовательная деятельность на основе экспериментальных данных с малых космических аппаратов ( интернет-проект Ливни знаний ОИЯИ, Дубна

Сцинтилляционный детектор для регистрации широких атмосферных ливней Школьный проект Часть 2

Принцип работы сцинтилляционного детектора Частица космического излучения (мюон или электрон), попадая в сцинтиллятор, возбуждает атомы вещ-ва. Данное возбуждение сбрасывается путем испускания фотона. Сцинтилляционные фотоны дошедшие до переизлучателя инициируют испускание переизлученных фотонов, которые, распространяясь по переизлучателю, достигают окна светочуствительного элемента – ФЭУ. ФЭУ сцинтиллятор переизлучатель ФЭУ – фотоэлектронный умножитель. Это прибор для регистрации фотонов. Если на входное окно попадает фотон (лучше сотня фотонов), то на выходе появляется электрический импульс.

Схема сцинтилляционной сборки детектора 8 секторов из сцинтилляционного пластика 8 зафиксированных между секторами переизлучателей Фотоэлектронный умножитель (ФЭУ) располагается в центре сборки ФЭУ

Сцинтилляционная сборка

Цетральная часть Центральное расположение ФЭУ позволяет получить достойные характеристики детектора.

Переизлучатели

Ливневой детектор Сцинтилляционная сборка 1 кв.м. Толщина пластика 20 мм. Используются световоды-переизлучатели. Электроника детектора состоит : блок связи с центральной машиной; преобразователя заряд цифра; преобразователя время цифра. Система термостабилизации. Вес детектора ~ 70 кг. Может располагаться на земле или на крыше здания.

Схема светосбора Shifter turns light and directs it exactly to photocathode PMT = 30 mm

Система температурной стабилизации Система термостабилизации обеспечивает постоянную температуру внутри детектора вне зависимости от времени года или перепадов температуры день - ночь. Т.е. температурный фактор не влияет на точность измерений детектора (амплитуда сигнала, момент срабатывания). Система термостабилизации состоит из: Термоизоляционный бокс из пенопласта. Два термодатчика. Управляемый нагреватель.

Термоизоляционный бокс Жесткий пенопласт Толщина стенок ~ 7 см

Термобокс в сборе Здесь холодный воздух нагревается и прокачивается обратно в детектор Термотрубка для холодного воздуха Термотрубка для горячего воздуха

Термостабилизация в действии min Температура в детекторе и температура на улице

Электроника детектора Собственная электроника детектора обеспечивает: Регистрацию частиц космического излучения; Мониторинг температуры в детекторе; Калибровку измерительной части. Электроника детектора состоит из блоков: Контроллер (microcontroller 8051); Преобразователь заряд цифра (12-bit QDC); Преобразователь время цифра (12-bit TDC); Термодатчик; Система калибровки; Высоковольтный преобразователь (для ФЭУ); Триггер первого уровня; Коммуникационная система (CAN-open стандарт).

Электроника детектора

Детектор на улице Внешний корпус – 0.7 мм оцинковка Коммуникацио нный кабель Детектор может работать на расстоянии до 1 км от центрального компьютера

Методика регистрации ШАЛ Стандартная методика регистрации Широких Атмосферных Ливней (ШАЛ) предполагает систему ливневых детекторов включенных в схему совпадений, т.е. одновременно сработавшие детекторы свидетельствуют о наличии ШАЛ.

Школьный проект. Вариант 1 Школа имеет полный доступ к установке и настройкам детекторов через Интернет. На мониторах учеников отображается такая же информация, что и на центральной машине ливневой установи. Можно выполнять исследовательские работы. Ливневая установка расположена в институте (например в МИФИ) Интернет

Школьный проект. Вариант 2 Ливневая установка расположена в ш коле. Можно выполнять исследовательские работы. Инженеры проекта имеют полный контроль над установкой. Интернет При необходимости, выезжают на ремонт или обслуживание установки МИФИ

Коммуникации Электроника детектора Центральная часть электроники Кабель, соединяющий Детектор и центральный компьютер QDC TDC LED HV Thresh 220V Центральный компьютер Схема совпадений Обычная розетка Витая пара(CAN) подтверждение запрос

Центральная часть электроники ливневой установки Одна такая стойка позволяет обслуживать до 48 детекторов. Схема совпадений FreeDOS Центральный компьютер. WinXP

Данные с детектора (калибровка) Как одно из заданий для школьников. Спектр сигналов с детектора при регистрации одиночных мюонов космических лучей

Школьный проект Часть 3 ЗАКЛЮЧЕНИЕ Что (собственно) предлагается для реализации (и в процессе реализации) школьного проекта по изучению широких атмосферных ливней

Где размещать? 1. Установка вариант 1 (от 500 тыс руб в год) Детекторы нааходятся в МИФИ (или др точке). Вся исследовательская (школьниками) работа осуществляется через Интернет. Ученики получают доступ к настройкам детекторов установки, к файлам выходных данных и данным мониторинга. 2. Установка вариант 2 (минимум 2 млн рублей) Детекторы в ДАННОЙ школе; школьники могут получить полный доступ к настройкам ливневой установки, но при этом установка контролируется (через интернет) инженерами проекта. Размещение детекторов проводится по согласованию со школьной администрацией, пожарной охраной и прочими службами. Возможные варианты размещения: На крыше школы; На территории; В помещении.

Учебный процесс 3. План занятий Лекции по физике космических лучей (частиц) (3 – 10 часов за учебный год) (проводят инженеры проекта); Лекции об устройстве детектора (упрощенная модель) (3 – 10 часов за учебный год) (проводят инженеры проекта); Лабораторные работы (ученики + инженеры проекта) Самостоятельные работы (ученики) (рефераты, доклады …..) Практическая работа (например: домики для детекторов)

Интерес 4. Источники финансирования Надо писать заявки в различные фонды или организации. Это могут быть только по направлению ОБРАЗОВАНИЕ или совместные. Техническую часть заявки пишут инженеры проекта, а остальные главы пишутся совместно. 5. Прибыли школы Приобретение школьниками новых знаний и умений Повышение квалификации учителей Дополнительный источник финансирования школы Авторитет школы Отчетный материал Участие в конференциях Поскольку подобные проекты существуют только за границей и эти зарубежные коллективы готовы к сотрудничеству – можно наладить контакты (обмен информацией, опытом). Возможен прием иностранных школьников здесь, и поездки наших школьников и учителей за границу. 6. Прибыли исполнителей (инженеров-физиков) Данный проект рассматривается как пилотный и, в случае его успешного проведения, предполагается глобальное расширение детекторной базы, что позволит получить интересные научные результаты. Дополнительный источник финансирования

Участники 7. Исполнители (инициаторы) Янсон Э.Е. (МИФИ) Богданов А.Г. (МИФИ) 8. Соисполнители Другие сотрудники МИФИ ИФВЭ (Институт Физики Высоких Энергий) (Серпухов) ГСПИ (Государственный Специализированный Проектный Институт) Университет Дубна