WORKSHOP 5 THERMAL ANALYSIS USING IMPORTED CAD GEOMETRY.

Презентация:



Advertisements
Похожие презентации
WORKSHOP 20 SINDA TRANSLATION OF A PWB MODEL. WS20-2 PAT312, Workshop 20, December 2006 Copyright 2007 MSC.Software Corporation.
Advertisements

WS17-1 WORKSHOP 17 IMPORT IGES FILE AND AUTO-TET MESH THE GEOMETRY NAS104, Workshop 17, March 2004 Copyright 2004 MSC.Software Corporation.
WS9-1 WORKSHOP 9 TRANSIENT THERMAL ANALYSIS OF A COOLING FIN NAS104, Workshop 9, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 9 THERMAL ANALYSIS OF THE HYBRID MICROCIRCUIT.
WORKSHOP 1 GETTING STARTED CREATING A CONDUCTION MODEL WS1-1 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 1 CONSTRUCT HYBRID MICROCIRCUIT GEOMETRY.
WS11-1 WORKSHOP 11 HEATING A BLOCK OF ICECREAM NAS104, Workshop 11, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 6 COMPARISON OF TWO HEAT SINK DESIGNS. WS6-2 PAT312, Workshop 6, December 2006 Copyright 2007 MSC.Software Corporation.
WORKSHOP 19 ANIMATING RESULTS. WS19-2 PAT312, Workshop 19, December 2006 Copyright 2007 MSC.Software Corporation.
WS15-1 WORKSHOP 15 THERMAL STRESS ANALYSIS WITH DIRECTIONAL HEAT LOADS NAS104, Workshop 15, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER. WS9A-2 NAS120, Workshop 9A, May 2006 Copyright 2005 MSC.Software Corporation.
WORKSHOP 10 SUPPORT BRACKET. WS10-2 NAS120, Workshop 10, May 2006 Copyright 2005 MSC.Software Corporation.
WORKSHOP 2 HYBRID MICROCIRCUIT FINITE ELEMENTS. WS2-2 PAT312, Workshop 2, December 2006 Copyright 2007 MSC.Software Corporation.
WS1c-1 WORKSHOP 1C NORMAL MODES ANALYSIS WITH FINE MESH NAS122, Workshop 1c, August 2005 Copyright 2005 MSC.Software Corporation.
WORKSHOP 18 POST-PROCESSING THE HYBRID MICROCIRCUIT RESULTS WITH INSIGHT.
WS16-1 WORKSHOP 16 MODAL FREQUENCY ANALYSIS OF A CAR CHASSIS NAS122, Workshop 16, August 2005 Copyright 2005 MSC.Software Corporation.
WORKSHOP 2 SIMPLY SUPPORTED BEAM. WS2-2 NAS120, Workshop 2, May 2006 Copyright 2005 MSC.Software Corporation.
PAT301, Workshop 1, October 2003 WS1-1 WORKSHOP 1 PISTON HEAD ANALYSIS.
WS2-1 WORKSHOP 2 CIRCUIT BOARD AND CHIPS USING CONDUCTION AND HEATING NAS104, Workshop 2, March 2004 Copyright 2004 MSC.Software Corporation.
WS8-1 WORKSHOP 8 TRANSIENT THERMAL NAS104, Workshop 8, March 2004 Copyright 2004 MSC.Software Corporation.
Транксрипт:

WORKSHOP 5 THERMAL ANALYSIS USING IMPORTED CAD GEOMETRY

WS5-2 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation

WS5-3 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Model Description In this exercise analyze an oven lid clamp. The clamp geometry (in centimeters) will be imported as ProEngineer geometry: from it, create a B-rep solid. Use the Auto TetMesh Mesher to mesh the solid. Apply boundary conditions, complete the analysis and review the results. This stainless steel (MID 364) clamp is used to clamp the perimeter flange on a pressurized processing oven lid. The oven lid surface can reach 300°C for several days. The lid is insulated; the insulation is sometimes pierced by the clamp edge. The clamp mounting boss is fastened with two bolts and thermal grease (total contact h=0.01 w/°C- cm 2 ) to a room temperature (20°C) water cooled sink. Determine both that the bracket mounting boss will remain at or below 50°C to ensure safe handling during disassembly and that the spring tab knee and boss transition areas remain at or below 150°C to prevent loss of clamping force due to creep.

WS5-4 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Objectives In this exercise you will complete a thermal analysis of a model created from imported CAD geometry. Exercise Overview 1. Open a new database named exercise_05.db. 2. Import Pro/ENGINEER primitive geometry from a file named oventab.geo. 3. Create a B-rep solid from these surfaces and delete the original surfaces in the process. 4. Mesh the solid with the TetMesh Mesher using Tet4 elements, a Global Edge Length of Define an element property over all the solid elements using a material name of Create a boundary sink node 999 below the mounting boss and not associated with geometry. 7. Change the view for application of boundary conditions. 8. Apply a 20°C fixed temperature to the sink node.

WS5-5 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Exercise Overview (cont.) 9. Apply a fixed temperature of 300°C to the edge of the solid in contact with the lid. 10. Apply a convection boundary condition of 0.01 w/°C-cm 2 to the underside of the mounting boss. 11. Select the mpidcgs.bin file in the P/Thermal Translation Parameters form in order to select the correct material property units. 12. Run the analysis and read the results into the database. 13. Fringe plot the temperature results and evaluate them against the requirements. 14. Quit MSC.Patran.

WS5-6 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 1: Open a New Database Open a new database a. Select File from Menu Bar. b. Select New. c. Click in the File Name Box and type in exercise_05.db. d. Select OK. e. In the New Model Preferences, select Default Tolerance. f. Change the Analysis Code to MSC.Patran Thermal. g. Select OK. a b c d e f g

WS5-7 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Import CAD Geometry Import Pro/ENGINEER primitive geometry. a. File. b. Select Import. c. Set Object, Source, and File Type to Model, Pro/ENGINEER, and Primitive Geometry. d. In the File Name box, select oventab.geo. e. Apply. f. Click OK when Model Import Summary appears. b a c d e a c

WS5-8 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Import CAD Geometry Change the View a. Click Preferences. b. Click Graphics… c. Deselect Auto Fit View. d. Apply. e. Cancel. a b c d e

WS5-9 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Import CAD Geometry Change the View a. Select Viewing. b. Under the Named View Options… select named view as isometric_view. c. Close. d. Use Fit view icon if necessary. a b c d

WS5-10 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 3: Create a B-rep Solid Create a B-rep solid from the surfaces. a. Geometry. b. Create/Solid/B-rep. c. Select Delete Original Surfaces. d. Deselect Auto Execute. e. Click in Surface List box and drag a rectangle around all the surfaces. f. Apply. g. When the message window appears asking to delete original surfaces, select Yes. a b c f d e

WS5-11 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 4: TetMesh the B-rep Solid Mesh the solid using the TetMesh mesher. a. Finite Elements. b. Create/Mesh/Solid. c. Use TetMesh for Mesher. d. Use the Tet4 for Topology. e. Click in Input List box and select Solid 1 from the screen. f. Deselect Automatic Calculations. g. Adjust the Global Edge Length to 2.5. h. Click Apply. a b c d e g h f

WS5-12 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 5: Apply Element Properties to the Elements Define an element property set for all the solid elements. a. Properties. b. Create/3D/Thermal 3D Solid. c. Enter Stainless_steel for Property Set Name. d. Click Input Properties… and enter a Material Name of 364. e. OK. f. Enter Solid 1 in the Select Members box or select the solid from the viewport. g. Click Add. h. Apply. a d e b g f c h

WS5-13 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 6: Create a Boundary Sink Node Create boundary sink node Node 999 below the mounting boss. a. Finite Elements. b. Create/Node/Edit. c. Enter 999 for Node ID List. d. Make sure that Associate with Geometry check box is unselected. e. Enter [0 –5 0] for Node Location List. f. Apply. b c d e f a Node 999

WS5-14 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 7: Increase Node Size and Change to Y-Z View Increase node display size and change the view to a Y-Z side_view. a. Select Display. b. From the drop-down menu, select Finite Elements…. c. Using the slide bar select 6 for Node Size. d. Apply. e. Cancel. f. Select Viewing from the menu bar and select Named View Options… g. Click on side_view for Select Named View. h. Close. i. Fit view a b c d f g h e i

WS5-15 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 7: Increase Node Size and Change to a Y-Z View Using Viewing: Transformations… to rotate the oven clamp. a. Select Viewing. b. Click on Transformations… c. Select Options. d. In the Rotation (deg) increment box use the slide bar to select 15 (deg). e. OK. f. Select this icon once for a 15° rotation. g. OK. a b c d e f g Node 999

WS5-16 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Fix Nodal Boundary Temperature Fix the boundary node temperature at 20.0° C. a. Loads/BCs. b. Create/Temperature/Nodal. c. For Option select Fixed. d. Enter Sink in New Set Name. e. Click Input Data. f. Under Fixed Temperature, enter g. OK. h. Click on Select Application Region. i. Select FEM filter, and in Select Nodes box select Node 999. j. Add. k. OK. l. Apply. a b c d f g i j k l b c d f g j k l e h i i

WS5-17 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Shade the Model Shade the model using Display. a. Select Display. b. Click on Entity Color/Label/ Render… c. Under Render Style select Shaded/Flat. d. Click Apply. e. Click Cancel. a b c d e Bottom of mounting Boss Lower Spring Tab Edge

WS5-18 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 9: Apply a Fixed Edge Temperature Apply a fixed temperature along an edge a. Enter Edge for New Set Name. b. Click on Input Data. c. In the Fixed Temperature box enter d. Click OK. e. Click on Select Application Region. f. Click on Geometry Filter. g. Choose the Curve or Edge icon in the select menu filter. h. Select Geometry Entities and select the lower spring tab edge, Solid (refer to the previous slide). i. Add. j. OK. k. Apply a b c d e f h i j k g

WS5-19 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 10: Apply Contact Heat Transfer Apply contact convection heat transfer. a. Loads/BCs. b. Create/Convection/Eleme nt Uniform. c. Under Option select Template, Convection. d. Under New Set Name specify Contact. e. Under Target Element Type select 3D. f. Click Input Data… g. Under Convection Coefficient enter h. For Fluid Node ID select Node 999. i. OK. a b c d e f g h i Node 999

WS5-20 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 10: Apply Contact Heat Transfer Continue to apply contact convection heat transfer. a. Click on Select Application Region… b. Click on the Geometry filter. c. Under Select Solid Faces select the bottom face of the mounting boss, Solid 1.1. d. Add. e. OK. f. Apply. a b c d e f Note: When selecting the solid face the face chosen will be highlighted. If the incorrect face is selected simply reselect closer to the centroidal location of the bottom mounting boss face. The centroid is located between the mounting holes and centered on the width of the face. c Solid 1.1

WS5-21 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Change the display of the model to isometric, etc. a. Click on Viewing. b. Select Named View Options… from the drop down menu. c. Under Select Named View select isometric_view. d. Close. e. Fit view. f. Reset the graphics using Reset Graphics icon. g. Reduce the node size using node size icon. Step 11: Change the Display of the Model a b c d e g

WS5-22 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 12: Prepare and Submit the Model Prepare and submit the model for analysis. a. Analysis. b. Analyze/ Full Model/ Full Run. c. Click on Translation Parameters…, and under File to Extract Undefined Materials, select 4,mpidcgs.bin. d. Click OK. e. Click on Solution Parameters…, and under Calculation Temperature Scale, select Celsius. f. Click OK. g. Click on Output Requests…, and under Units Scale for Output Temperatures, select Celsius. h. Click OK. i. Click Apply. a c d e g i b

WS5-23 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 13: Read and Plot Results Read results file and plot results. a. Analysis. b. Read Result/Result Entities. c. Click on Select Results File… d. Select the directory path that leads to exercise_05. e. Under Available Files, select nr0.nrf.01. f. OK. g. Click Select Rslt Template File… h. Under Files select pthermal_1_nodal.res_tmpl i. OK. j. Apply. a b c f g h i d j e Note: from within MSC.Patran the only indication that the analysis has successfully finished is the existence of an nr0.nrf.01 results file in a subdirectory one level below the working directory.

WS5-24 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 14: Plot the Temperature Results Plot the results from posted FEM. a. Results. b. Create/Quick Plot. c. Under Select Result Cases select Time: D+00S d. Under Select Fringe Result select Temperature. e. Select the Fringe Attributes icon. f. Under Display select Element Edges. g. Click on Label Style… h. Under Label format select Fixed. i. Under Significant figures select 4 by using the slider bar. j. Click OK. k. Click Apply. l. Erase the geometry from the viewport using Plot/Erase. a b c d e f g h i j k i

WS5-25 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 14: Plot the Temperature Results

WS5-26 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation Step 15: Quit MSC.Patran Quit MSC.Patran. a.Select File. b.Click Quit from the drop down menu.

WS5-27 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation

WS5-28 PAT312, Workshop 5, December 2006 Copyright 2007 MSC.Software Corporation