S3-1 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation SECTION 3 CONDUCTION.

Презентация:



Advertisements
Похожие презентации
WORKSHOP 1 GETTING STARTED CREATING A CONDUCTION MODEL WS1-1 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation.
Advertisements

WS9-1 WORKSHOP 9 TRANSIENT THERMAL ANALYSIS OF A COOLING FIN NAS104, Workshop 9, March 2004 Copyright 2004 MSC.Software Corporation.
WS15-1 WORKSHOP 15 THERMAL STRESS ANALYSIS WITH DIRECTIONAL HEAT LOADS NAS104, Workshop 15, March 2004 Copyright 2004 MSC.Software Corporation.
WS8-1 WORKSHOP 8 TRANSIENT THERMAL NAS104, Workshop 8, March 2004 Copyright 2004 MSC.Software Corporation.
WS17-1 WORKSHOP 17 IMPORT IGES FILE AND AUTO-TET MESH THE GEOMETRY NAS104, Workshop 17, March 2004 Copyright 2004 MSC.Software Corporation.
WS11-1 WORKSHOP 11 HEATING A BLOCK OF ICECREAM NAS104, Workshop 11, March 2004 Copyright 2004 MSC.Software Corporation.
WS2-1 WORKSHOP 2 CIRCUIT BOARD AND CHIPS USING CONDUCTION AND HEATING NAS104, Workshop 2, March 2004 Copyright 2004 MSC.Software Corporation.
WS5-1 PAT328, Workshop 5, May 2005 Copyright 2005 MSC.Software Corporation WORKSHOP 5 ARBITRARY BEAM SECTION.
WS10-1 WORKSHOP 10 TRANSIENT ANALYSIS WITH RADIATION SOURCE AND CONVECTION NAS104, Workshop 10, March 2004 Copyright 2004 MSC.Software Corporation.
S5-1 NAS104, Section 5, March 2004 Copyright 2004 MSC.Software Corporation SECTION 5 TRANSIENT THERMAL ANALYSIS (SOL 159)
Workshop 7B-1 NAS101 Workshops Copyright 2001 MSC.Software Corporation WORKSHOP 7B Structure With Spring Support.
WORKSHOP 2 SIMPLY SUPPORTED BEAM. WS2-2 NAS120, Workshop 2, May 2006 Copyright 2005 MSC.Software Corporation.
WS13-1 WORKSHOP 13 DIRECTIONAL HEAT LOADS NAS104, Workshop 13, March 2004 Copyright 2004 MSC.Software Corporation.
WS4-1 PAT328, Workshop 4, May 2005 Copyright 2005 MSC.Software Corporation WORKSHOP 4 SOLID TOPOLOGY OPTIMIZATION.
WS2-1 PAT301, Workshop 2, October 2003 WORKSHOP 2 CANTILEVERED PLATE.
WS1-1 WORKSHOP 1 IMPORTING A TEMPERATURE FIELD PAT 328, Workshop 1, September 2004 Copyright 2004 MSC.Software Corporation.
WS9-1 PAT328, Workshop 9, September 2004 Copyright 2004 MSC.Software Corporation WORKSHOP 9 TOPOLOGY OPTIMIZATION.
WORKSHOP 5 COORDINATE SYSTEMS. WS5-2 NAS120, Workshop 5, May 2006 Copyright 2005 MSC.Software Corporation.
WS4-1 WORKSHOP 4 FORCED AIR CONVECTION FROM PRINTED CIRCUIT BOARD NAS104, Workshop 4, March 2004 Copyright 2004 MSC.Software Corporation.
WS3-1 PAT328, Workshop 3, May 2005 Copyright 2005 MSC.Software Corporation WORKSHOP 3 TOPOLOGY OPTIMIZATION.
Транксрипт:

S3-1 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation SECTION 3 CONDUCTION

S3-2 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1 - STEADY STATE CONDUCTION n Part 1 (based on Exercise 1A in MSC.Nastran Thermal Analysis Users Guide) u Create and mesh geometry representing an aluminum rod u Create constant conductivity, K, property u Apply fixed temperature BCs u Run SS analysis u Post-process temperature results n Part 2 - Conductivity as a function of temperature u Copy the DB file from Part 1 into new directory u Use Field: Create/Material Property to specify K as K(T) u Run SS analysis u Post-process temperature results

S3-3 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n This project is aimed at illustrating the steps required to set up a simple steady state conduction problem n Throughout, we will take time to discuss the relationship between the MSC.Patran Nastran thermal preference and the MSC.Nastran files

S3-4 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Create a geometric curve using Geometry: Create/Curve/XYZ n Create mesh seeds(controls element size during creation) on curve n Mesh curve, Curve 1 u Note that because of the existing mesh seeds the Global Edge Length does not have any affect on the element size

S3-5 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Specify constant conduction for material

S3-6 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Specify the topologically 1D shapes as 1D rod elements, CROD n The cross-sectional area is specified under Input Properties… n The Application Region is the geometric curve Curve 1

S3-7 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Create constant temperature LBC at one end of bar element mesh u Temperature is 1300 degrees u Application Region is Point 1

S3-8 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Create constant temperature LBC at other end of bar element mesh u Temperature is 300 degrees u Application Region is Point 2

S3-9 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Run the steady state thermal analysis using MSC.Nastran u Under Solution Type select STEADY STATE ANALYSIS u Under Solution Parameters…make the selections noted

S3-10 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Access the MSC.Nastran results file, project1. xdb u Instead of reading a results file project1.op2, attach the given results file l Keeps the MSC.Patran database size smaller

S3-11 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 K = CONSTANT n Temperature versus X-direction path results

S3-12 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1. DAT FILE n Take a look at the form and content of the CROD, PROD and MAT4 records n Notice how the temperature BCs and initial conditions are specified and called out by the Case Control n Convergence criteria are set by the NLPARM card n Note helpful comments (e.g. the material name) n Note the presence of additional records (e.g. PARAMs SIGMA, TABS, AUTOSPC, POST, PATVER)

S3-13 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation SOL 153 TIME 600 $ Direct Text Input for Executive Control CEND ANALYSIS = HEAT TITLE = MSC/NASTRAN job created on 01-Jul-98 at 16:18:30 ECHO = SORT MAXLINES = TEMPERATURE(INITIAL) = 1 $ Direct Text Input for Global Case Control Data SUBCASE 1 $ Subcase name : Default SUBTITLE=Default NLPARM = 1 SPC = 1 THERMAL(SORT1,PRINT)=ALL FLUX(SORT1,PRINT)=ALL BEGIN BULK Extracted from MSC.Nastran model.DAT file PROJECT 1, PART 1 K = CONSTANT PROJECT1.DAT

S3-14 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PARAM POST 0 PARAM AUTOSPC YES PARAM TABS 0. PARAM* SIGMA NLPARM 1 0 AUTO 5 25 PW NO + A + A $ Direct Text Input for Bulk Data $ Elements and Element Properties for region : rod PROD CROD CROD CROD CROD CROD $ Referenced Material Records $ Material Record : alum $ Description of Material : Date: 22-May-98 Time: 11:11:29 MAT $ Nodes of the Entire Model GRID GRID PROJECT1. DAT PROJECT 1, PART 1 K = CONSTANT Extracted from MSC.Nastran model.DAT file

S3-15 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation GRID GRID GRID GRID $ Loads for Load Case : Default $ Fixed Temperatures of Load Set : left SPC $ Fixed Temperatures of Load Set : right SPC $ Initial Temperatures from Temperature Load Sets TEMP $ Default Initial Temperature TEMPD 1 0. $ Referenced Coordinate Frames ENDDATA PROJECT 1, PART 1 K = CONSTANT Extracted from MSC.Nastran model.DAT file PROJECT1.DAT

S3-16 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 1 RESULTS IN THE.F06 FILE n The Executive Control and Case Control are echoed; Bulk Data is suppressed by default n NON-LINEAR ITERATION MODULE OUTPUT - shows convergence progress n TEMPERATURE VECTOR - nodal temperatures n FORCES OF SINGLE-POINT CONSTRAINT - heats of constraint n FINITE ELEMENT TEMPERATURE GRADIENTS AND FLUXES – X,Y,Z results in element frame

S3-17 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation 0 SUBCASE 1 LOAD STEP = E+00 T E M P E R A T U R E V E C T O R POINT ID. TYPE ID VALUE ID+1 VALUE ID+2 VALUE ID+3 VALUE ID+4 VALUE ID+5 VALUE 1 S E E E E E E+02 1 MSC/NASTRAN JOB CREATED ON 01-JUL-98 AT 16:18:30 JULY 1, 1998 MSC/NASTRAN 12/11/96 PAGE 10 DEFAULT 0 SUBCASE 1 LOAD STEP = E+00 F I N I T E E L E M E N T T E M P E R A T U R E G R A D I E N T S A N D F L U X E S ELEMENT-ID EL-TYPE X-GRADIENT Y-GRADIENT Z-GRADIENT X-FLUX Y-FLUX Z-FLUX 1 ROD E E+05 2 ROD E E+05 3 ROD E E+05 4 ROD E E+05 5 ROD E E+05 1 MSC/NASTRAN JOB CREATED ON 01-JUL-98 AT 16:18:30 JULY 1, 1998 MSC/NASTRAN 12/11/96 PAGE 11 Extract from MSC.Nastran ASCII Results File PROJECT 1, PART 1 K = CONSTANT PROJECT1.f06

S3-18 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 2 K = K(TEMP) n Create a new (sub-) directory named PROJECT1A n Copy PROJECT1.DB, from PART 1, into the subdirectory and rename the file to PROJECT1A.DB n Open PROJECT1A.DB in MSC.Patran n Create a tabular temperature field for conductivity which peaks at 650 degrees Celsius n Modify the material to reference the newly created temperature function n Post process to obtain the temperature plot, and examine the new MSC.Nastran files

S3-19 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 2 K = K(TEMP) n Create temperature dependent function for the conduction material property

S3-20 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 2 K = K(TEMP) n Verify that the temperature dependent conductivity function is correct

S3-21 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 2 K = K(TEMP) n Verification continued

S3-22 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 2 K = K(TEMP) n Modify the conductivity to include the temperature dependent function

S3-23 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation n Note that the Default initial temperature has been set to 900 degrees instead of 0 degree, as was done for the previous problem. u Note: the initial temperature specification becomes important for convergence in radiation dominate problems. n It is a good practice to have the initial (guessed) temperature(TEMPD) somewhere between your minimum and maximum temperature boundary conditions. PROJECT 1, PART 2 K = K(TEMP)

S3-24 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 1, PART 2 K = K(TEMP) n Temperature versus X-direction path results

S3-25 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation NONLINEAR ITERATION 0 N O N - L I N E A R I T E R A T I O N STIFFNESS UPDATE TIME 0.09 SECONDS ITERATION TIME 0.00 SECONDS CONVERGENCE FACTORS ITERATION EUI EPI EWI LAMBDA DLMAG E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-04 0*** USER INFORMATION MESSAGE 6186, *** SOLUTION HAS CONVERGED *** Extract from MSC.Nastran ACSII Results File PROJECT 1, PART 2 K = K(TEMP)

S3-26 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation TEMPERATURE OUTPUT LOAD STEP = E+00 5 ROD E E+05 T E M P E R A T U R E V E C T O R 0 SUBCASE 1 POINT ID. TYPE ID VALUE ID+1 VALUE ID+2 VALUE ID+3 VALUE ID+4 VALUE ID+5 VALUE 1 S E E E E E E+02 1 MSC/NASTRAN JOB CREATED ON 01-JUL-98 AT 16:18:30 JULY 1, 1998 MSC/NASTRAN 12/11/96 PAGE 10 DEFAULT 0 NONLINEAR SUBCASE 1 LOAD STEP = E+00 F I N I T E E L E M E N T T E M P E R A T U R E G R A D I E N T S A N D F L U X E S ELEMENT-ID EL-TYPE X-GRADIENT Y-GRADIENT Z-GRADIENT X-FLUX Y-FLUX Z-FLUX 1 ROD E E+05 2 ROD E E+05 3 ROD E E+05 4 ROD E E+05 Extract from MSC.Nastran ASCII Results File PROJECT 1, PART 2 K = K(TEMP)

S3-27 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation n Whats been added/changed in the Bulk Data? n Is this what you expected to see? MAT MATT4 1 1 $ Material Tables ( No Conversions Needed ) $ Temperature Dependent Material Table : alum_t TABLEM1 1 + B + B C + C D + D ENDT PROJECT 1, PART 2 K = K(TEMP) Extracted from MSC.Nastran model.DAT file

S3-28 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation n Perform Workshop 1 Getting Started, Creating a Conduction Model in the exercise workbook. EXERCISES

S3-29 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2 ANALYSIS WITH ORTHOTROPIC MATERIALS n 10x10x1 plate n k x =204.0, k y =304.0,k z =404.0 n Finite element model using solid elements (CHEXA) n LE held at 300 degrees C, RE at 200 degrees C n SS runs for 2 material orientations: as-is, or 45 degree rotation about Z (use MCIDs) n Plot fringe results n Examine.F06 file

S3-30 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2 ANALYSIS WITH ORTHOTROPIC MATERIALS Material Coordinate Directions Parallel to MSC.Nastran Basic Material Coordinate Directions Parallel to Rotated Coord System

S3-31 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 1 ANALYSIS WITH ORTHOTROPIC MATERIALS n Create 10x10x1 geometric solid n IsoMesh the solid with CHEXA solid elements

S3-32 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 1 ANALYSIS WITH ORTHOTROPIC MATERIALS n Create 3D orthotropic material n The properties, Kx, Ky, Kz, are constant and are to be for the default direction

S3-33 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 1 ANALYSIS WITH ORTHOTROPIC MATERIALS n Create 3D solid element properties n The default material direction(orientation) is used

S3-34 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 1 ANALYSIS WITH ORTHOTROPIC MATERIALS n Create a fixed temperature, of 300 degrees, BC on left face of solid, Solid 1.1

S3-35 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 1 ANALYSIS WITH ORTHOTROPIC MATERIALS n Create a fixed temperature, of 200 degrees, BC on right face of solid, Solid 1.2

S3-36 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 1 ANALYSIS WITH ORTHOTROPIC MATERIALS n Temperature fringe plot for default material orientation

S3-37 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 2 ANALYSIS WITH ORTHOTROPIC MATERIALS n Create local rotated coordinate frame for the material orientation

S3-38 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation PROJECT 2, PART 2 ANALYSIS WITH ORTHOTROPIC MATERIALS n Modify the 3D solid element property set to include the local rotated coordinate frame. Coord 1

S3-39 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation This picture shows that the temperature contour has been shifted because the material is align with material coordinate system that is rotated 45 degrees about the Z direction PROJECT 2, PART 2 ANALYSIS OF ORTHOTROPIC MATERIALS

S3-40 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation $PSOLID,PID,MID,CORDM PSOLID $CHEXA,EID,PID,G1,G2,G3,G4,G5,G6 CHEXA B + B CORD2R CX + CX $MAT5,MID,KXX,KXY,KXZ,KY,KYZ,KZZ MAT Extract from MSC.Nastran model.DAT file PROJECT 2, PART 2 ANALYSIS OF ORTHOTROPIC MATERIALS

S3-41 NAS104, Section 3, March 2004 Copyright 2004 MSC.Software Corporation n Perform Workshop 2 Circuit Board and Chips Using Conduction and Heating in the exercise workbook. EXERCISES