WORKSHOP 12 ANALYSIS OF A FUEL NOZZLE TIP. WS12-2 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation.

Презентация:



Advertisements
Похожие презентации
WORKSHOP 17 ANALYSIS OF A FUEL NOZZLE TIP USING CONVECTION BETWEEN REGIONS.
Advertisements

WORKSHOP 6 COMPARISON OF TWO HEAT SINK DESIGNS. WS6-2 PAT312, Workshop 6, December 2006 Copyright 2007 MSC.Software Corporation.
WORKSHOP 20 SINDA TRANSLATION OF A PWB MODEL. WS20-2 PAT312, Workshop 20, December 2006 Copyright 2007 MSC.Software Corporation.
WS9-1 WORKSHOP 9 TRANSIENT THERMAL ANALYSIS OF A COOLING FIN NAS104, Workshop 9, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 1 CONSTRUCT HYBRID MICROCIRCUIT GEOMETRY.
WORKSHOP 1 GETTING STARTED CREATING A CONDUCTION MODEL WS1-1 NAS104, Workshop 1, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 2 HYBRID MICROCIRCUIT FINITE ELEMENTS. WS2-2 PAT312, Workshop 2, December 2006 Copyright 2007 MSC.Software Corporation.
WORKSHOP 22 STEADY STATE RADIATIVE BOUNDARY CONDITIONS.
WORKSHOP 9 THERMAL ANALYSIS OF THE HYBRID MICROCIRCUIT.
WS11-1 WORKSHOP 11 HEATING A BLOCK OF ICECREAM NAS104, Workshop 11, March 2004 Copyright 2004 MSC.Software Corporation.
WS2-1 WORKSHOP 2 CIRCUIT BOARD AND CHIPS USING CONDUCTION AND HEATING NAS104, Workshop 2, March 2004 Copyright 2004 MSC.Software Corporation.
WORKSHOP 9A 2½ D CLAMP – SWEEP MESHER. WS9A-2 NAS120, Workshop 9A, May 2006 Copyright 2005 MSC.Software Corporation.
WS8-1 WORKSHOP 8 TRANSIENT THERMAL NAS104, Workshop 8, March 2004 Copyright 2004 MSC.Software Corporation.
WS1a-1 WORKSHOP 1A NORMAL MODES ANALYSIS NAS122, Workshop 1a, August 2005 Copyright 2005 MSC.Software Corporation.
WS10-1 WORKSHOP 10 TRANSIENT ANALYSIS WITH RADIATION SOURCE AND CONVECTION NAS104, Workshop 10, March 2004 Copyright 2004 MSC.Software Corporation.
Workshop 9-1 NAS101 Workshops Copyright 2001 MSC.Software Corporation WORKSHOP 9 Buckling Analysis of Plate.
WS13-1 WORKSHOP 13 DIRECTIONAL HEAT LOADS NAS104, Workshop 13, March 2004 Copyright 2004 MSC.Software Corporation.
PAT312, Section 60, December 2006 S60-1 Copyright 2007 MSC.Software Corporation SECTION 60 PATRAN RADIATION LBCS.
WS15-1 WORKSHOP 15 THERMAL STRESS ANALYSIS WITH DIRECTIONAL HEAT LOADS NAS104, Workshop 15, March 2004 Copyright 2004 MSC.Software Corporation.
WS2-1 WORKSHOP 2 NORMAL MODES ANALYSIS OF A 2 DOF STRUCTURE NAS122, Workshop 2, August 2005 Copyright 2005 MSC.Software Corporation.
Транксрипт:

WORKSHOP 12 ANALYSIS OF A FUEL NOZZLE TIP

WS12-2 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation

WS12-3 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Model Description In this exercise you will create an axisymmetric model of a fuel nozzle tip. You will model the heat transfer contribution of the fuel flow by an advective boundary condition. The geometry and boundary conditions for the problem are shown below. The interior surface of the nozzle across which the fuel flows must be coupled to the fuel flow with a heat transfer coefficient. Since the corresponding fluid sink will not be a single node but a series of nodes the usual Loads/BCs Create/Convection /Template, Convection form does not apply. Objectives Model an axisymmetric slice of a fuel nozzle tip. Apply advective, radiative, and convective boundary conditions. Run a steady state analysis and display results.

WS12-4 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation

WS12-5 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Exercise Overview 1. Create a new database named exercise_12.db. Set Tolerance to Default, and the Analysis Code to MSC/THERMAL. 2. Create the nozzle, fluid stream, and Convective Quad geometry. 3. Verify that surface normals are consistent with R x Z reversing any surface normals which are not consistent with R x Z. 4. Mesh the model surfaces with an IsoMesh of Quad4 elements and the curve representing the fluid stream with Bar2 elements, global edge length of Use Finite Elements/Create/Node/Edit to create two ambient nodes 998 and 999 for the ambient and flame temperatures, respectively. 6. Equivalence the nodes at the mating surface edges. 7. Apply Thermal Axisymmetric element properties to the nozzle and Advection Bar element properties to the flow stream. 8. Convert fluid stream nodes to fluid nodes using Utilities and apply element properties for Convective Quads. 9. Create fuel convection coefficient as a factor of temperature difference. 10. Define three fixed temperature, two convective, and two radiative boundary conditions in Loads/BCs. 11. Create and post a group which does not contain the Convective Quad elements. 12. Use the new Analysis/Build Template function to create the CONV and VFAC definitions. 13. Create a mat.dat.apnd file containing the fuel mass flow Cp MPID data provided in Figure 1.

WS12-6 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Suggested Exercise Steps (cont…) 14. Prepare and submit the model for analysis specifying that it is steady state analysis including viewfactor and radiation resistor computations, for an axisymmetric model with unit conversions from inches to feet that all calculations and output should be in °F. 15. Read and plot the results. 16. Quit MSC.Patran.

WS12-7 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 1: Create a New Database Create a new database called exercise_12. a. File / New. b. Enter exercise_12 as the file name. c. Click OK. d. Choose Default Tolerance. e. Select MSC.Thermal as the Analysis Code. f. Select Thermal as the Analysis Type. g. Click OK. a b c d e f g

WS12-8 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create the Nozzle and Fluid Stream Geometry Create the nozzle, fluid stream, and Convective Quad geometry. a. Geometry. b. Set to Create/Surface/XYZ. c. Deselect the Auto Execute option. d. Enter for Vector Coordinates List. e. Enter [ ] for Origin Coordinates List. f. Click Apply. g. Click on the Show Labels Icon. b c d e f g a

WS12-9 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create the Nozzle and Fluid Stream Geometry (Cont.) Create the second surface. a. Geometry. b. Create/Surface/ XYZ. c. Enter for Vector Coordinates List. d. Select Point 4 for Origin Coordinates List. e. Apply. f. Select Viewing from the main menu bar. g. Select Scale Factors… h. Specify 5.0 for Model Y. i. Apply. j. Cancel. a b c d e h ij f Point 4

WS12-10 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create the Nozzle and Fluid Stream Geometry (Cont.) Create the surface that will represent the geometry where the steel and still air will reside. a. Geometry. b. Transform/Surface/ Translate. c. Click inside Direction Vector, select the tip and base icon and select Point 5, then Point 6 in the viewport. d. Enter 2 for the Repeat Count. e. Deselect Auto Execute. f. Click in the Surface List box and drag a rectangle around both surfaces in the view port. g. Apply. a b c d e g c f

WS12-11 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create the Nozzle and Fluid Stream Geometry (Cont.) Create the two curves where the bar elements will be created. a. Geometry. b. Create/Curve/ XYZ. c. Enter for Vector Coordinates List d. Deselect Auto Execute. e. Enter [0 0 0] for Origin Coordinates List. f. Apply. g. Enter for Vector Coordinates List. h. Select Point 14 for Origin Coordinates List. i. Apply. a b c d f g h i

WS12-12 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 2: Create the Nozzle and Fluid Stream Geometry (Cont.) Create surfaces between Curve 1 and lower edge of Surface 5, and between Curve 2 and the lower edge of Surface 6. These surfaces will support the Convection Quad elements. a. Geometry. b. Create/Surface/Curve. c. Deselect Auto Execute. d. Click on Starting Curve List and drag a rectangle around Curve 1 and 2. e. Click in Ending Curve List, select Edge icon in picking filter menu, and select the lower edges of Surfaces 5 and 6. f. Apply. g. Delete/Any. h. Enter Surface 3 for Geometric Entity List. i. Apply. a g i b c d e f h

WS12-13 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 3: Verify Surface Normals and Flow Verify that surface normals are consistent with RxZ. a. Change to isometric view using the following icon. b. Geometry. c. Show/Surface/ Normal. d. Click in Surface List box and drag a rectangle around all the surfaces. e. Apply. f. Edit/Surface/Reverse. g. Deselect Auto Execute. h. Click in Surface List box and select all the surfaces in the viewport. i. Apply. j. Draw Normal Vectors. k. Reset Graphics a b c d e f g h a Note: Radiative boundary conditions modeled in an axisymmetric coordinate frame must have all elements normal pointing in the R x Z (R cross Z) direction. In this model, RxZ is in the global –Z direction. It is wise to verify the normal direction now since there are fewer surfaces than elements. This will facilitate viewing and reversing normals. Element normal will follow geometry normals in a 2D model. Alternatively, element normals can be reversed, if necessary, later in the modeling process. However, if LBCs are applied to elements before the normals are reversed then when the element normals are reversed the LBCs may be dropped from those elements and require review and reapplication. k

WS12-14 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 3: Verify Surface Normals and Flow (Cont.) Verify the direction of the flow stream. a. Click Display. b. Select Geometry… c. Select Show Parametric Direction. d. Apply. e. Cancel. f. Return to Front View using the following icon. g. Click Display. h. Select Geometry… i. Deselect Show Parametric Direction. j. Apply. k. Cancel. a b c d f e

WS12-15 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 4: IsoMesh the Surfaces and Fluid Stream Curves Mesh the model surfaces with IsoMesh using Quad4 elements and the curve representing the fluid stream. a. Finite Elements. b. Create/Mesh/Surface. c. Enter for Global Edge Length.(Be sure to deselect Automatic Calculation) d. Click in Surface List and drag a rectangle around all surfaces in the viewport. e. Apply. f. Create/Mesh/Curve. g. Enter for Global Edge Length. h. Click in Curve List box and select Curve 1 and 2 using the shift button. (Use label control to see where Curve 1 and 2 are located.) i. Apply. a b c d e f g h i h h

WS12-16 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 5: Create Boundary Nodes Create two nodes for the ambient and flame temperatures. a. Finite Elements. b. Create/Node/Edit. c. Enter 998 for Node List ID. d. Deselect Associate with Geometry. e. Deselect Auto Execute. f. Enter [ ] for Node Location List. g. Apply. h. Repeat for Node 999 located at [ ]. i. Increase Node size by clicking Display. j. Select Finite Elements… k. Use the slider bar to set Node Size to 9. l. Click Apply, then Cancel. m. Or select the following icon. a b c d e f g h k l m i

WS12-17 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 5: Create Boundary Nodes (Cont.) Remove all labels to unclutter the display. a. Click Display. b. Select Entity Color/Label/ Render… c. Select Hide all Entity Labels. d. Apply. e. Cancel. f. Or select the following icon. a b c d f e

WS12-18 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 6: Equivalence the Nodes Equivalence the nodes at the mating surface edges. a. Finite Elements. b. Equivalence/All/Tolerance Cube. c. Apply. a b c

WS12-19 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 7: Apply Element Properties to Nozzle Apply Thermal Axisymmetric element properties to the nozzle, and Advection bar element properties to the flow stream. a. Use tool bar Label Control icon to turn on Surface labels. b. Properties. c. Create/2D/Thermal Axisymmetric. d. Enter Nickel for Property Set Name. e. Click Input Properties… f. Enter 243 for Material Name. g. OK. h. Click in Select Members box, and select Surface 1, 2, and 4 using the shift key. i. Click Add, then Apply. j. Repeat these steps for Steel, Material Name 379, and Surface 5 and 6. b c d e f g h i a

WS12-20 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Create Fluid Nodes for Convective Quads Convective Quad elements must have at least one Fluid Node per convective Quad element. A Fluid Node is a 0D element that uses a single FE node. There are two ways of creating Fluid Nodes. They are 1) Utilities, and 2) (Element) Properties. The first approach used is Utilities. a. Select Utilities. b. Select Thermal from the drop down menu. c. Select Create Node Type Elements… d. OK. e. Enter Fluid_nodes for New Set Name. f. Click in Select Nodes and drag a rectangle around the line of nodes at the bottom of Surface 7 and 8. These nodes are along the centerline of the flow stream. g. Apply. h. Cancel. a b c e f g h f

WS12-21 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 8: Create Fluid Nodes for Convective Quads (Cont.) The second approach used is Properties. a. Finite Elements. b. Create/Element/Edit. c. Select for Shape Point. d. Click in Node 1 box and drag a rectangle around the line of nodes at the bottom of Surface 7 and 8. These nodes are along the centerline of the flow stream. e. Apply. f. Properties. g. Create/0D/Node Type. h. Enter Fluid_nodes for Property Set Name. i. Click Input Properties… j. Select Fluid Node for Value Type. k. OK. l. Click in Select Members and drag a rectangle around the line of point elements at the bottom of Surface 7 and 8. m. Add. n. Apply. a b c d e j f g h m n l i

WS12-22 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Note: convective quads have no physical reality in the model. They are a device for passing cross sectional area data, convection configuration data (GPs), and fluid node data to the convection algorithm. When the Between Region option is expanded to include 2D dimensionality, the need for Convection Quads will be limited to passing data to user defined configurations. Create Convective Quad elements on Surface 7 and 8. a. Properties. b. Create/2D/Convective Quad. c. Enter Conv_quads for Property Set Name. d. Click Input Properties… e. Enter 10 for Template ID. f. OK. g. Click in Select Members box and select Surface 7 and 8 in the viewport. h. Add. i. Apply. a e f b c d g i h Step 9: Create Convective Quads

WS12-23 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Create an element property that will define the Bar2 elements as advective bars. a. Under Properties set to Create/1D/Advection Bar. b. Enter Adv_bars for Property Set Name. c. Click Input Properties… d. Enter 1 for Specific Heat MPID. e. Enter 50 for Mass Flow Rate. f. OK. g. Click in Select Members box, and select Curves 1 and 2. h. Add. i. Apply. d e f a a b h i Step 10: Create Advection Bars c g

WS12-24 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 11: Fuel Convection Coefficient Create fuel convection coefficient as a factor of temperature difference. a. Fields. b. Create/Material Property/General. c. Enter h_fuel for Field Name. d. Click Input Data… e. Select mpid_indx_linr_tabl for Select Function Term. f. Enter fuel for Description-Property Table. g. Enter 1001 for Material Property ID (MPID). h. Select Fahrenheit for Temperature Units. i. Enter 0.0 for Input Temperature Value. j. Enter. k. Enter 1.0 for Input Property Value. l. Enter. m. Enter for Input Temperature Value. n. Enter. o. Enter for Input Property Value. p. Enter. q. Click OK, OK, and Apply. a b c d f g h q i

WS12-25 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 12: Apply Boundary Conditions Define three fixed temperature, two convective, and two radiative boundary conditions. a. Loads/BCs. b. Create/Temperature/Nodal. c. Select Fixed for Option. d. Enter T_air for New Set Name. e. Click Input Data… f. Enter for Fixed Temperature. g. OK. h. Click Select Application Region. i. Select FEM Geometry Filter. j. Click in Select Nodes box and select Node 998. k. Click Add, OK, and Apply. l. Repeat these steps for New Set Name T_flame with 4000°F at Node 999, and New Set Name T_fuel with 200°F at Node 221. a f g i j k Node 221 b c d e h k Node 998 Node 999

WS12-26 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Create the ambient convection boundary condition. a. Loads/BCs. b. Create/Convection/Element Uniform. c. Select Template,Convection for Option. d. Enter Amb_conv for New Set Name. e. Select 2D for Target Element Type. f. Click Input Data… g. Enter 500 for the Convection Coefficient. h. Select Node 998 for the Fluid Node ID. i. OK. j. Click Select Application Region… k. Select the Geometry filter. l. Select the Edge icon m. Select the top edges of Surface 1 and 2 using the Shift key for Select Surfaces or Edges. n. Add. o. OK. p. Apply. a b c d e f g h i j k l m o p Step 12: Apply Boundary Conditions (Cont.)

WS12-27 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Create gap convection conditions across still air gap. a. Loads/BCs. b. Create/Convection/Element Uniform. c. Set Option to Fixed Coefficient. d. Enter Still_air for New Set Name. e. Set the Target Element type to 2D. f. Set Region 2 to 2D. g. Click Input Data… h. Enter 7.0 for Convection Coefficient. i. OK. j. Click Select Application Region… k. Click in Application Region input box and select the bottom edge of Surface 1, Surface 1.1. l. Add. m. Click in Coupling region box and select the top edge of Surface 5, Surface 5.3. n. Add. o. OK. p. Apply. a h i k m o l n b c d e f g j p Step 12: Apply Boundary Conditions (Cont.)

WS12-28 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Create the flame radiation boundary condition. a. Loads/BCs. b. Create/Radiation/ Element Uniform. c. Select Template,View Factors for Option. d. Enter Flame_rad for New Set Name. e. Select 2D for Target element Type f. Click Input Data… g. Enter 1 for Enclosure ID. h. Enter 10 for VFAC Template ID. i. Select Node 999 for Ambient Node ID. j. Select Can Be Obstructing Surface. k. OK. l. Click Select Application Region… m. Select Geometry Filter. n. Select the right edges of Surface 2, 4, and 6, using Edge icon from the select filter menu, and Shift key. o. Click Add, OK, then Apply. a g h i j k m n o b c d f l e o Step 12: Apply Boundary Conditions (Cont.)

WS12-29 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Create the radiation effect in the still air gap. a. Loads/BCs. b. Create/Radiation/Element Uniform. c. Select Template,View Factors for Option. d. Enter Still_air_rad for New Set Name. e. Select 2D for Target Element Type. f. Click Input Data… g. Enter 2 for Enclosure ID. h. Enter 10 for VFAC Template ID. i. Leave Ambient Node ID blank. j. Deselect Can be Obstructing Surface. k. OK. l. Click Select Application Region… m. Select the Geometry Filter. n. Select the edges on the perimeter of the still air gap, Surface 1.1, 4.4, and 5.3 for Select Surfaces or Edges. o. Click Add, OK, and Apply. a m n o b c d e f l o g h j k i Step 12: Apply Boundary Conditions (Cont.)

WS12-30 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 13: Display all Boundary Conditions Reduce the size of the Loads/BCs markers. a. Click on Display. b. Select Load/BC/Elem. Props… from the drop down menu. c. Click on Vectors/Filters… d. Set Scale Factor to e. Click on Apply. f. Click on Cancel.

WS12-31 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 14: Create a Group Named Nozzle Create and post a group named Nozzle which does not contain the Convective Quad elements. a. Preferences. b. Select Picking… from the drop down menu. c. Select Enclose Centroid from Rectangle/Polygon Picking area. d. Close. e. Group. f. Select Create… g. Enter Nozzle for New Group Name. h. Select Make Current and Unpost All Other Groups. i. Click in Entity Selections and drag a rectangle around the nozzle portion of the model including the two boundary nodes, but excluding the Convective Quad elements. j. Apply. k. Cancel. l. Reduce the Node size. c d f g h i j k e a l

WS12-32 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 15: Create a template.dat.apnd File Use the Analysis: Build Template form to create a file named template.dat.apnd, creating the CONV and VFAC definitions. a. Analysis. b. Build Template. c. Select Create Template File… d. Set to Create/CONV/Data Entry. e. Enter 10 for CONV ID. f. Enter 30 for CFIG ID. g. Enter 1001 for MPIDs. h. Apply. i. Cancel. j. After closing Template Entries form, set Template File Data form to Create/VFAC/ Data Entry. k. Enter 10 for VFAC ID. l. Enter 0.8 for Emissivity. m. Apply. n. Click Write File… o. Name the file template.dat.apnd p. Click OK, Cancel, and Cancel. a b c j k l m d e f g h i

WS12-33 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 16: Create a mat.dat.apnd File Create a mat.dat.apnd file containing the fuel mass flow C p data provided in Figure 1. a. If applicable, rename the existing mat.dat.apnd file to mat.dat.apnd_old. b. Open a new file in microsoft notepad. c. Insert the following data, starting in the first column. Make sure there are no blank lines, especially at the end of the file. End the file with a /. MPID 1 C F 1.0 MDATA 0.57 / c. Save as file mat.dat.apnd in the same directory as the MSC.Patran database for this workshop. Note: there is an alternative method for creating MPID definitions. Recall that Fields: Create/Material Property/General can also be used to accomplish this.

WS12-34 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 17: Prepare and Run Analysis Prepare and submit the model for analysis specifying that it is steady state analysis. a. Analysis. b. Analyze/Full Model/ Full Run. c. Click on Translation Parameters… d. Select Axisymmetric Geometry, R Z Co-ordinates for Model Dimensionality. e. Select Yaxis for Radial, R Co- ordinate. f. Select Xaxis for Centerline, Z Co-ordinate. g. Select Perform Geometry Units Conversion. h. Select inches for From Units. i. Select feet for To units. j. Select 3,mpidfph.bin (Btu-feet- lbm-hour). k. OK. a b c d e f g h i j k

WS12-35 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 17: Prepare and Run Analysis (Cont.) Prepare and submit the model for analysis specifying that it is steady state analysis (continued). a. Click on Solution Type… b. Select Perform Viewfactor Analysis. c. OK. d. Click Solution Parameters… e. Select Fahrenheit for Calculation Temperature Scale. f. Click Run Control Parameters. g. Select E-9 BTU/HR/FT2/R4. h. Enter for Initial Temperature. i. Select Fahrenheit for Initial Temperature Scale. j. OK. k. OK. a b d h g i j

WS12-36 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 17: Prepare and Run Analysis (Cont.) Prepare and submit the model for analysis specifying that it is steady state analysis (continued). a. Click Output Request… b. Select Fahrenheit for Units Scale for Output Temperatures. c. Specify Hours for Units Definition for Time Label. d. OK. e. Click Submit Options… f. Make sure that both Create Viewfactor Control File (vt.ctl) and Execute Viewfactor Analysis are selected. g. OK. h. Apply. a b c d e f g h

WS12-37 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 18: Read and Plot Results Read and Plot the results. a. Analysis. b. Read Result/Result Entities. c. Click Select Results File… d. Under directories find the path that leads to exercise_12. e. Select nr0.nrf.01 for available files. f. OK. g. Click Select Rslt Template File… h. Select pthermal_1_nodal. res_tmpl. i. OK. j. Apply. a b c d f g h i j e

WS12-38 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 18: Read and Plot Results (Cont.) Read and Plot the results (continued). a. Results. b. Create/Quick Plot. c. Select Time: D+ 00S…for Select Result Cases. d. Select Temperature for Select Fringe Result. e. Select the Fringe Attributes icon. f. Select Element Edges for Display. g. Click Label Style. h. Select Fixed for Label Format. i. Use the slider bar to select 4 Significant figures. j. OK. k. Apply. a h i j b e f g k

WS12-39 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation Step 19: Quit MSC.Patran Quit MSC.Patran. a. Select File. b. Click Quit from the drop down menu.

WS12-40 PAT312, Workshop 12, December 2006 Copyright 2007 MSC.Software Corporation