Метаматериалы 1. Метаматериалы материалы,природные свойства которых обусловлены не столько природными физическими свойствами, сколько периодической микроструктурой.

Презентация:



Advertisements
Похожие презентации
Моисеев Сергей Геннадьевич Необычные оптические НАНОматериалы «Неделя нанотехнологий» в Ульяновске, 7 апреля 2011 г.
Advertisements

Метаматериалы и плазмоника аспирантка Игнатьева Дарья Олеговна.
Презентация на тему: «Фотонные сенсоры. Фотонные кристаллы» Подготовил Иван Огурцов, 543 гр.
1 Оптика метаматериалов с отрицательным показателем преломления Студентка 6 курса Сапарина Дарья Научный руководитель проф. Сухоруков Анатолий Петрович.
1 Отражение и преломление света на границе раздела двух сред 1. Основные положения геометрической оптики Закон преломления: падающий луч, преломленные.
ОПТИКА ИТОГОВЫЙ ТЕСТ. 1. Какое из перечисленных ниже электромагнитных излучений имеет наибольшую частоту?
Лекции по физике. Оптика Интерференция света. 2 Корпускулярная и волновая теории света Первоначально возникли и развивались две теории света: корпускулярная.
РАСПРОСТРАНЕНИЕ СВЕТОВЫХ ИМПУЛЬСОВ В ОДНОМЕРНЫХ ФОТОННЫХ КРИСТАЛЛАХ Дадашзадех гаргари Нушин БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УДК Минск 2012.
Оптика. Свет.. Определение. Оптика (от др.-греч. πτική появление или взгляд) раздел физики, рассматривающий явления, связанные с изменением во времени.
Фотоны, их свойства. Корпускулярно – волновой дуализм. Учитель физики МАОУ СОШ 8 г. Тюмень Жижимонтова Татьяна Геннадьевна.
Лекции по физике. Оптика Геометрическая оптикаЛекции по физике. Оптика Геометрическая оптика.
Лекции по физике. Оптика Геометрическая оптика. 2 Основные законы оптики 1. Закон прямолинейного распространения света (в однородной среде) 2. Закон независимости.
Сигаева В.В., учитель физики. Свет - это электромагнитные волны. Во всех процессах взаимодействия света с веществом основную роль играет электрический.
Шарапова Е.Н. Преподаватель математики и физики ЛАЗЕР Марий Эл, г.Йошкар-Ола, ГОУ ПУ 1.
Презентация по физике Путешествие по стране Путешествие по стране «Оптика» «Оптика» Автор: учитель физики Автор: учитель физики МОУ «СОШ 1 МОУ «СОШ 1 р.п.
Волновая оптика – это раздел оптики, изучающий световые волны как частный случай электромагнитных волн. Основными вопросами волновой оптики являются волновые.
(лат. рассеяние) – зависимость показателя преломления n вещества (или скорости распространения света) в нем от частоты n проходящего через него света.
Цветовое многообразие. Каждый день мы видим мир окрашенный в различные цвета… Но почему это так? Неужели все на свете содержит различные цветные пигменты?
Развитие взглядов на природу света Волновые и квантовые свойства света.
Электромагнитные излучения небесных тел. Электромагнитное излучение небесных тел основной источник информации о космических объектах. Исследуя электромагнитное.
Транксрипт:

Метаматериалы 1

Метаматериалы материалы,природные свойства которых обусловлены не столько природными физическими свойствами, сколько периодической микроструктурой создаваемой человеком. Куб метаматериала представляет собой трехмерную матрицу, образованную медными проводниками и кольцами с разрезом. Микроволны с частотами около 10 ГГц ведут себя в таком кубе необычно, потому что для них куб имеет отрицательный показатель преломления. Шаг решетки 2,68 мм Суперлинза со сверх разрешением радиодиапазона 2/24

Свойства и строение метаматериалов Строительными блоками метаматериалов являются электромагнитные резонаторы, обычно в виде металлических полосок, спиралей, разорванных колец. (рис. 1) Изменяя форму, размеры, взаимное расположение резонаторов, можно направленно формировать свойства метаматериалов. Свойства метаматериалов существенно отличаются от свойств компонентов, входящих в его состав, и определяются особым упорядочением и структурой компонентов (рис. 2) рис. 1 рис. 2 3/24

История создания В 1898 году Джагадис Чандра Бозе провел первый микроволновый эксперимент по исследованию поляризационных свойств созданных им структур искривленной конфигурации. В 1914 году Линдман воздействовал на искусственные среды, представлявшие собой множество беспорядочно ориентированных маленьких проводов, скрученных в спираль и вложенных в фиксировавшую их среду. Первые упоминания о метаматериалах с отрицательным коэффициентом преломления начинаются с упоминания работы советского физика Виктора Веселаго, опубликованной в журнале "Успехи физических наук" за 1968 г. 4/24 Джагадис Чандра Бозе Виктор Веселаго

Отрицательный показатель преломления Для всех сред, которые могут быть найдены в природе, лучи падающего и преломленного света находятся по разные стороны от нормали, восстановленной к границе раздела сред в точке преломления. Природные материалы с отрицательной диэлектрической проницаемостью хорошо известны – это любой металл при частотах выше плазменной частоты. В этом случае ε < 0 достигается за счет того, что свободные электроны в металле экранируют внешнее электромагнитное поле. Гораздо сложнее создать материал с μ < 0, в природе такие материалы не существуют. 5/24

Отрицательный показатель преломления Для достижения μ < 0 используют систему проводящих колец с зазором, помещенных в переменное магнитное поле. Созданный метаматериал состоял из металлических стержней, ответственных за ε < 0, и медных кольцевых резонаторов, благодаря которым удалось добиться μ < 0. (Рис. 1 ) Физики из университета штата Айова и Университета Карлсруэ в Германии сумели создать метаматериал с показателем преломления -0,6 для красного света с длиной волны 780 нм. Пример того, как выглядел бы отрицательный показатель преломления для воды (Рис. 2) 6/24 Рис. 1 Рис. 2

Видимый спектр Для начала ученые взяли лист стекла и нанесли на него тонкий слой серебра, затем слой фторида магния, затем снова слой серебра; таким образом, был получен «сэндвич» с фторидом толщиной всего 100 нм. После этого ученые при помощи стандартной технологии травления проделали в этом «сэндвиче» множество крохотных квадратных отверстий (шириной всего 100 нм, гораздо меньше длины волны красного света); в результате получилась решетчатая структура, напоминающая рыбацкую сеть. Затем они пропустили через полученный материал луч красного света и измерили показатель преломления, который составил -0,6. 7/24 Молекула ДНК

Применение Потенциальные применения метаматериалов охватывают все области, в которых используется электромагнитное излучение - от космических систем до медицины. Спектр электромагнитных метаматериалов, разрабатываемых в настоящее время огромен: С помощью метаматериалов можно создавать устройства, создание которых невозможно только при использовании природных материалов. отрицательный коэффициент преломления изображение высокой четкости плащ-невидимка нано-оптические и квантовые информационные технологии радиочастотные, СВЧ, терагерцевые, оптические метаматериалы работы в соответствующей области нанотехнологий - нанофотонике - позволят создавать устройства, гораздо быстрее обрабатывающие информацию, чем существующие компьютеры. Благодаря тому, что метаматериалы обладают отрицательным показателем преломления, они идеальны для маскировки объектов, так как их невозможно обнаружить средствами радиоразведкимаскировкирадиоразведки 8/24

Используя метаматериалы можно не только существенно улучшить параметры известных электромагнитных приборов, но и создать принципиально новые приборы: от сверх линз с разрешением много меньшим длины волны излучения до экранов невидимости. Большинство практических применений - от экранов невидимости до сверх линз и поляризаторов требуют создания метаматериала с прецизионными трехмерными элементами. 9/24

ДОСТИЖЕНИЯ: 1. Суперлинза (материалах с отрицательным показателем преломления можно преодолеть дифракционный предел разрешения обычной оптики.Первая экспериментально продемонстрированная линза с отрицательным показателем преломления имела разрешение в три раза лучше дифракционного предела.) 2. Видение сквозь стены. ( новый класс искусственных материалов, которые демонстрируют сильный магнитный отклик на излучение терагерцевого диапазона.) 3. Блеф-стена. (создаёт иллюзию отсутствия реального объекта, то "ворота" формируют впечатление, что объект (в данном случае стена) существует там, где на деле его нет (то есть имеется открытый канал). 4. Антизеркало ( при отражении электромагнитной волны оно обращает магнитную составляющую колебаний, но не трогает электрическую. Так что в сравнении с зеркалом обычным, это можно было бы назвать анти зеркалом.) 5. Плащ-невидимка. 10/24

Фотонный кристалл Фотонный кристалл – это периодическая структура, позволяющая изменять направление излучения и выделять (пропускать или поглощать) излучение с определенной частотой. Идея фотонного кристалла была предложена в 1987 году Эли Яблоновичем Благодаря периодическому изменению коэффициента преломления, позволяют получить разрешённые и запрещённые зоны для энергий фотонов. 11/24

Фотонный чип Устройство, основанное на квантовой запутанности фотонов, в котором производятся всевозможные манипуляции с квантовым состоянием запутанных фотонов и с высокой точностью производятся измерения полученных результатов. Цель – создание компактных высокоскоростных устройств обработки информации, которые могут успешно справляться с входными потоками, скоростью более чем 100 гигабит в секунду. 12/24 Квантовые запутанности фотонов

Такой плащ позволяет сделать невидимым закрываемый им объект, поскольку он не отражает свет. 13/24

14/24

Гиперболические метаматериалы Характеристики: Высокая степень анизотропности Изготавливаются из переходных металлов и диэлектрических слоев Обладают свойствами металла и диэлектрика Дисперсия света в таких материалах становится гиперболической Могут повысить плотность фотонах состояний, пропорциональную скорости радиоактивного распада Большое их количество вызывает потери Метаматериалы с гиперболической дисперсией.Примеры 3D HMMs с высокой степенью анизотропности. Изготовлены из плазмонной нанопроволки(А) и переходных слоев металла и диэлектрика(В). k(x) и k(0)-тангенциальные компоненты нормированного волнового вектора;Ex,Ey,Ez-это диагональные компоненты тензора диэлектрической проницаемости свободного пространства,-длина волны в свободном пространстве. (С)Имитация излучения в HMM и спектра мощности в HMM по (вверху)сравнению с обычными диэлектриками(внизу) 15

Метаповерхности Метаповерхности это очень тонкие пленки метаматериалов, содержащих слои оксидов или двумерную структуру мельчайших субволновых антенн. Метаповерхности создаются с использованием электронно-пучковой литографии или резки сфокусированным ионным пучком, совместимых с существующими полупроводниковыми технологиями и процессами. В последнее время создаются из оксидов цинка и индия, легированного алюминия и галлия. У этих металлов и окисей металлов меньшие оптические потери и более широкие возможности для модуляции в уже существующие оптические системы. Метаповерхность 16/24

Свойства мета поверхностей характеризуются малыми потерями широкий рабочий спектр контроль характеристик света(частота, фаза, импульс, угловой момент и поляризация) эффективная модуляции света генерация световых импульсов заданной формы, управления распространением световых пучков в пространстве диагностика структур с нано точностью 17/24 Изображения мета поверхности, полученное при помощи сканирующего туннельного микроскопа.

18/24 Справа на рисунке (часть Б) схематически изображена так- называемая "гиперболическая мета поверхность" - миниатюрная металлическая решетка, используемая для увеличения скорости испускания фотонов квантовыми излучателями. Область ее применения - квантовые информационные системы, включая квантовые компьютеры, потенциально намного более мощные, чем современные компьютеры Слева на рисунке (часть A) показана матрица нано-антенн, представляющая собой пример плазмонной мета поверхности. Ее использование возможно в ряде приложений, включая применение ее в качестве гиперлинзы с целью повышения разрешающей способности оптических микроскопов, в некоторых случаях до 10 раз.

Гиперболические мета поверхности Характеристики: Малые,восполнимые потери Широкий контроль над плотностью фотонных состояний Гиперболические мета поверхности.(А) Иллюстрация увеличения скорости излучения квантовых источников на мета поверхности,состоящей из металлической решетки на диэлектрической подложке (В и С)Иллюстрация поверхностных гиперлинз без усиления(В) и с усилением (С).Два рассеивателя находятся на верхней части решетки и обладают субволновым разделением 19/24

Применение мета поверхностей Могут быть интегрированы в более сложные схемы: микропроцессор компьютера миниатюрные многофункциональные приборы применяемые в биологии и медицине (Чтобы «увидеть насквозь» человека или предмет, в будущем не придется прибегать к небезвредному рентгену. Метаматериалы позволят работать с любыми длинами волн – и для любых целей). мета поверхности также можно использовать как широкодиапазонный инфракрасный химический датчик метаструктуры могут быть использованы для создания компьютерных голограмм Применение в квантовых информационных технологиях Фото разработанной учеными металинзы под микроскопом. Один из примеров компьютерной голограммы 20/24

Вывод Потенциальные применения метаматериалов охватывают все области, в которых используется электромагнитное излучение - от космических систем до медицины. отрицательный коэффициент преломления изображение высокой четкости маскировочные технологии нано-оптические и квантовые информационные технологии компьютерные технологии на основе фотонного чипа В каждой из областей ученые добились немалых достижений, но пока технологии на основе метаматериалов не получили широкого использования в обществе. Основная проблема во всех областях-миниатюризация технологий. 21/24

Список литературы Планарная фотоника и мета поверхности (Килдышев А.В.,Шалаев В.М) - Метаматериалы или дилемма «невидимости» Отриц. показатель преломления Метаматериалы для видимого спектра применение метаматериалов 22/24

Презентацию подготовили: Группа 1350 Сальянов Александр Добрых Дмитрий Михайловская Анна Соколов Павел Чернядьев Александр Зверев Александр 23/24

Спасибо за внимание! 24/24