Accelerators, briefly Кратко об ускорителях часть II LHC Ерохин Александр ЦЕРН, ИЯФ СО РАН 2013 г.

Презентация:



Advertisements
Похожие презентации
Адронный колайдер. Элементарная частица Олейникова Татьяна.
Advertisements

5 октября 2005 годаСтатус работ по усокрению легких ядер 1 СТАТУС РАБОТ ПО УСКОРЕНИЮ ЛЕГКИХ ЯДЕР В ИФВЭ.
LHC LHC 22 Расчетные параметры LHC Протон-протонный коллайдер Энергия 7 ТэВ + 7ТэВ см -2 сек-1 (LHCb) Светимость.
Запуск коллайдера LHC 13 декабря 2009 года получены первые стокновения пучков при энергии 1.18 ТэВ ТэВ.
Для под, истэ, этэм. Солнечный протуберанец: для сравнения показан размер нашей планеты.
Садыкова Гульназ 10 а Солдатова Карина 10 а. Как бы далеко не ушла наука вперед, перед учеными все таки остаются вопросы на которых нет ответов. Поэтому.
Институт ядерной физики им. Г. И. Будкера СО РАН – для Большого Адронного Коллайдера Большой Адронный Коллайдер – крупнейшая научная установка современности.
ЦЕРН Европейский Центр Ядерных Исследований. Научная школа для российских учителей физики в CERN г Логинова Т.А.
Линейный ускоритель ионов С +6 - инжектор синхротрона, предназначенного для адронной терапии.
Большой Aдронный Коллайдер Большой Aдронный Коллайдер.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования.
Источник позитронов низкой энергии. Проект LEPTA Рудаков А.Ю.
Большой Адронный Коллайдер Семков Н. Ершов А 10г, МОУ «Лицей 10» Г.Пнрмь, 2009г.
Большой Адронный Коллайдер МБОУ СОШ 1 Учитель физики – Архипова Ольга Леонидовна.
Автор - составитель теста В. И. Регельман источник: regelman.com/high/Kinematics/1.php Автор презентации: Бахтина И.В. Тест по теме «КИНЕМАТИКА»
1. На рисунке жирными точками показана среднесуточная температура воздуха в Бресте каждый день с 6 по 19 июля 1981 года. По горизонтали указываются числа.
Что такое коллайдер? Автор Калинин Владимир Классный Руководитель Архипецкая Ольга Николаевна.
Урок повторения по теме: «Сила». Задание 1 Задание 2.
«Разработка прототипа сканирующей неразрушающей системы с высоким разрешением на основе линейного ускорителя электронов для досмотра крупногабаритных грузов»
Диаграмма качества знаний. Сравнительные результаты качества знаний учащихся по классам: год уч.год уч. год уч. год
Транксрипт:

Accelerators, briefly Кратко об ускорителях часть II LHC Ерохин Александр ЦЕРН, ИЯФ СО РАН 2013 г.

(слайдов: 40) 2 Часть II Европейский Центр Ядерных Исследований и Большой Адронный Коллайдер Основные этапы проектировки и строительства Устройство БАК Испытания и запуск коллайдера Участие России и Украины в проекте БАК

(слайдов: 40) 3 Европейский Центр Ядерных Исследований и Большой Адронный Коллайдер В начале 1980-х годов был предложен проект ускорителя, осуществляющего столкновения электронов и их антиподов – позитронов, – большой электрон-позитронный коллайдер (LEP). Осенью 1983 года началось строительство LEP. В долине Женевского озера на глубине ста метров был вырыт кольцевой туннель общей длиной 27 километров. Качество подземных работ было столь высоким, что, когда в 1988 году два конца туннеля соединились, расхождение между ними составило всего один сантиметр. LHC

(слайдов: 40) 4 Основные этапы проектировки и строительства. Симпозиум в Лозанне, Швейцария, в 1984 году стал точкой старта для проекта. Были определены рабочие группы для рассмотрения различных аспектов физики, которые могут быть изучены на новом протонном коллайдере. Большой Адронный Коллайдер (Large Hadron Collider) становится приоритетным проектом для ЦЕРН. С конца восьмидесятых годов по середину девяностых годов прошлого века было проведено множество семинаров, посвященных концептуальному дизайну коллайдера. В итоге в декабре 1994 года реализация проекта БАК получила полное одобрение Совета ЦЕРН. Для БАК был не нужен новый туннель – вполне годился и старый, тот, что был вырыт для LEP. Решено было, что ускорители PS и SPS также не останутся без работы – они будут придавать частицам первоначальную энергию Опубликован первый дизайн-проект БАК, содержащий детали архитектуры будущего ускорителя Окончательно одобрены эксперименты CMS и ATLAS. Оба эксперимента предназначены для поисков бозона Хиггса Успешно испытан первый дипольный магнит длиной 15 метров. Достигнуто поле величиной 8.3 Тесла, являющееся номинальным для БАК. При этом ток в обмотках магнитов составляет порядка 13 килоампер. CERN & LHC

(слайдов: 40) г. - В ЦЕРН поставлены из ИЯФ (Новосибирск) первые «теплые» магниты для перепускных каналов. В последующие годы ИЯФ поставил около 540 магнитов для перепускных каналов г. - Успешно испытаны первые квадрупольные магниты, необходимые для фокусировки пучка – 2002 гг. - Начато серийное производство дипольных и квадрупольных магнитов. Получены первые прототипы корректирующих магнитов. К концу 2002 года из тоннеля извлечены последние компоненты LEP, в итоге за 14 месяцев демонтажа LEP из 27 километрового тоннеля было извлечено более тонн оборудования г. - В ЦЕРН поставлен первый американский магнит, предназначенный для финальной фокусировки пучка в местах экспериментов. Всего за последующие годы будет поставлено 20 таких магнитов. Это явилось вкладом США в проект БАК – 2005 гг. - Закончено строительство подземных залов для детекторов CMS и ATLAS, закончена вся подземная инфраструктура. Размеры зала для детектора CMS составили 53 метра длиной, 27 метров шириной и 24 метра высотой, сам зал находится на глубине 100 метров под землей. CERN & LHC

(слайдов: 40) 6 В эти же годы продолжается серийное производство всех сверхпроводящих магнитов. В производство вовлечены следующие страны: Финляндия, Италия, Франция, Россия. Сборка магнитов осуществляется в Словакии и Италии г. - Построен новый центр управления, объединяющий пультовые для систем криогеники, накопительного кольца SPS, основного кольца коллайдера и всех инженерных систем. С 2006 года управление испытаниями криогенной и магнитной систем БАК ведутся отсюда г. - Завершена установка в тоннель и последующий монтаж всех магнитов БАК. Завершен монтаж систем питания и всех систем защит, включая системы вывода энергии г. - В январе-марте завершен монтаж детекторов CMS и ATLAS 2006 – 2008 гг. – процедура запуска БАК (commissioning) Осень 2008 – авария в месте соединения сверхпроводящих дипольных магнитов 2009 г. – восстановление после аварии и повторный commissioning 2010 г. – официальный запуск коллайдера, плавное повышение энергии, первые столкновения CERN & LHC

(слайдов: 40) 7 LHC & CERN Accelerator Complex

(слайдов: 40) 8 CERN Accelerator Complex

(слайдов: 40) 9 LINAC2 – линейный ускоритель протонов (протоны ускоряются до энергии 50 МэВ) Booster – бустерный накопитель для PS, ускоряет протоны с энергии 50МэВ до на энергии 1.4 ГэВ. LINAC2 и Booster являются инжектором для протонного синхротрона PS PS - протонный синхротрон на энергию 26 ГэВ, периметром 628 м. PS, запущенный в 1959 г., являлся самым большим протонным синхротроном на тот момент. SPS – Super Proton Synchrotron. Супер-протонный синхротрон на энергию 450 ГэВ. Весь комплекс от LINAC2 до SPS является инжекционным для LHC. LINAC3 - линейный ускоритель ионов свинца (4.2 МэВ/нуклон) LEIR – Low Energy Ion Ring, ионное кольцо низких энергий (72 МэВ/нуклон). LINAC3 и LEIR являются инжектором для PS при работе PS, SPS и LHC в ионной моде CERN Accelerator Complex

(слайдов: 40) 10 ISOLDE – Isotope Separator On-Line, радиационные ионные пучки n_TOF - neutron time-of-flight facility, источник нейтронов AD – Antiproton Decelerator. Машина, обеспечивающая низкоэнергетические антипротоны для получения атомов антиводорода. CNGS – CERN neutrinos to Gran Sasso - нейтрино для лаборатории в Гран Сассо (Италия) CERN Accelerator Complex

(слайдов: 40) 11 LHC

(слайдов: 40) 12 LHC

(слайдов: 40) 13 Параметр ЕдиницыВеличина Энергия, максимальная ТэВ2 х 7 Энергия инжекции ТэВ0.45 Количество частиц в сгустке 1.15 х Количество сгустков 2808 Пиковая светимость в точках IP1 IP5 см -2 сек х Частота обращенияк Гц Частота ускоряющей структуры МГц Дипольное поле на энергии 7 Тэ ВТл 8.36 Дипольное поле на энергии инжекции Тл 0.54 LHC Основные параметры БАК

(слайдов: 40) 14 ВЧ система Криостат со сверхпроводящими резонаторами

(слайдов: 40) 15 Сверхпроводящие резонаторы ВЧ система Приращение энергии 485 кэВ на каждый оборот => ~15 млн. оборотов. При частоте 11 тыс. оборотов в секунду, учитывая потери, подъем энергии ~30 мин.

(слайдов: 40) 16 Подъем энергии Магнитная система

(слайдов: 40) 17 Типы магнитов Рабочая температура, К Макс. ток Кол-во магнитов Основные диполи kA1232 Основные квадруполи kA392 Индивидуально запитываемые квадруполи 4.54 – 6 kA110 Разделительные диполи 4.56 kA18 Квадруполи финальной фокусировки kA32 Корректирующие магниты A> 4000 Магнитная система

(слайдов: 40) 18 Структуры секторов 1_2 и 2_3 Магнитная система

(слайдов: 40) 19 Основные дипольные магниты Параметры: Рабочий ток до 11,8 кА Рабочее поле до 8.33Тл Длина магнита: 15 м Количество в одном секторе (одной цепи): 154 шт.! Запасенная энергия в одной цепи: 1.1ГДж ! Магнитная система

(слайдов: 40) 20

(слайдов: 40) 21 Магнитная система

(слайдов: 40) 22 Магнитная система Основные квадрупольные магниты

(слайдов: 40) 23 Магнитная система Соединения сверхпроводящих шин между магнитами

(слайдов: 40) 24 Магнитная система Соединения вакуумных камер между магнитами

(слайдов: 40) 25 Магнитная система Триплеты (inner triplet magnets) – магниты финальной фокусировки

(слайдов: 40) 26 Испытания и запуск коллайдера. Commissioning

(слайдов: 40) 27 На испытания и запуск коллайдера в 2006–2008 гг. были командированы более 100 сотрудников профильных научных институтов и лабораторий всего мира. По мере завершения монтажа отдельных секторов основного кольца решено было начать их испытания. В январе 2007 года началась процедура охлаждения единой криогенной системы первого смонтированного сектора (сектор 7-8). Уже в мае того же года почти три с половиной километра магнитной системы находились при температуре сверхтекучего гелия, что оказалось мировым рекордом по объему криогенной системы. В силу уникальности и сложности работ испытания первого сектора, а также исправление выявленных слабых мест, продлились до ноября 2007 года. Тем не менее, уже в ноябре был подготовлен следующий сектор, и испытания стали проводиться в режиме сектор за сектором. К весне 2008 года испытания перешли в режим параллельной работы на двух, а далее и на трех секторах одновременно. И к августу 2008 г. почти все 27- километровое кольцо коллайдера прошло процедуру испытания магнитной системы. 10 сентября был произведён официальный запуск коллайдера, и через два дня пучок циркулировал уже непрерывно. На этом задача по получению циркулирующего пучка завершилась, и физики продолжили испытания магнитной системы. 19 сентября, в ходе испытаний магнитной системы при токе 9 килоампер, что близко к проектному значению, в секторе 3-4 (последний сектор по ходу испытаний) произошёл инцидент, в результате которого коллайдер LHC вышел из строя. Commissioning

(слайдов: 40) 28 Несмотря на тяжелейшие последствия аварии, в течение первой половины 2009 года были отремонтированы и поставлены на свое место более 50 магнитов, проверены все соединения между магнитами (одно их таких соединений и послужило причиной аварии) и установлены новые каналы защиты (мониторинга) этих соединений, что позволит предотвратить подобные аварии в будущем. К концу 2009 года произошел повторный запуск коллайдера, а 23 ноября LHC официально стал «коллайдером»: самые первые протон-протонные столкновения были зарегистрированы всеми четырьмя детекторами. В конце ноября достигнута энергия протонов 1,18 ТэВ, и тем самым был побит рекорд американского коллайдера Тэватрон (0,98 ТэВ). В середине декабря столкновения проходят с энергией 2,36 ТэВ в режиме 4 сгустка на пучок. 30 марта 2010 года на Большом адронном коллайдере начались столкновения протонов с полной энергией в месте встречи 7 ТэВ. В течение всего 2010 года в коллайдере постепенно наращивалась интенсивность протонных пучков как за счет увеличения количества сгустков в пучке, так и за счет повышения интенсивности каждого сгустка до номинального значения год стал первым годом полноценной работы Большого адронного коллайдера годы – техническая остановка коллайдера (LS1). Commissioning

(слайдов: 40) 29 Некоторые интересные факты LHC При полной проектной мощности триллионы протонов будут обращаться по основному кольцу коллайдера с частотой раз в секунду, имея при этом скорость на уровне 99.99% от скорости света. Два пучка протонов, каждый с энергией 7ТэВ, обеспечивают энергию столкновения 14ТэВ. При этом каждую секунду будет происходить около 600 миллионов столкновений. Энергия, запасенная в пучке протонов, равна кинетической энергии скоростного поезда TGV (скоростные электропоезда во Франции, скорость которых достигает трехсот километров в час). При этом энергия одного протона в пучке примерно равна кинетической энергии летящего комара. БАК – установка с экстремально высокими и экстремально низкими температурами. В момент столкновения температура достигает величин в больше температуры ядра Солнца. Однако при этом рабочая температура сверхпроводящих магнитов, обеспечиваемая криогенной системой, составляет °C (1.9 K). Такая температура поддерживается почти на всем периметре коллайдера.

(слайдов: 40) 30 Наши страны являлись одними из основных участников проекта БАК, осуществляла поставку высокотехнологичного оборудования как для самого коллайдера, так и для экспериментальных установок – детекторов частиц. Стоимость Большого адронного коллайдера (не включая стоимости детекторов) составила примерно 5 миллиардов швейцарских франков, при этом Россия, при участии украинских специалистов и промышленных предприятий, выполнила работы на сумму более 150 миллионов швейцарских франков. Участие России и Украины в LHC Участие России и Украины в БАК

(слайдов: 40) 31 Резистивные электромагниты применяются в коллайдере LHC в прямолинейных промежутках и предназначены: для разделения пучков, для компенсации влияния двух больших спектрометров, для коррекции орбиты пучков заряженных частиц, а также для формирования, так называемых «очищающих вставок». Также резистивные дипольные и квадрупольные магниты применяются в каналах транспортировки пучков в коллайдер. Для транспортировки пучков с энергией 450 ГэВ из протонного синхротрона SPS в коллайдер LHC построены два канала транспортировки пучка, ТI2 и TI8, протяженностью около 2.5 км каждый. В рамках участия Российской Федерации в проекте LHC Институт ядерной физики им. Г.И. Будкера поставил в ЦЕРН 360 дипольных магнитов (MBI), 180 квадрупольных магнитов (MQI) и 100 корректирующих магнитов для формирования траектории пучков при их перепуске из SPS в основное кольцо коллайдера. Участие России и Украины в LHC

(слайдов: 40) 32 Протонный пучок инжектируется из SPS (через описанные выше каналы транспортировки) в LHC с энергией 450 ГэВ с помощью вертикальных отклоняющих магнитов (кикеров) и горизонтальных отклоняющих септум-магнитов MSI. Сброс же пучка, так называемый дамп пучка, происходит с помощью горизонтальных отклоняющих кикеров и вертикальных отклоняющих септум-магнитов MSD. Септум магниты MSI и MSD были разработаны и произведены в ГНЦ ИФВЭ (совместно с ЦЕРН) в 2003 г. Участие России и Украины в LHC

(слайдов: 40) 33 Коммутирующие сверхпроводящие шины (bus-bars). Участие России и Украины в LHC

(слайдов: 40) 34 Энергия, запасенная во всей магнитной системе, составляет порядка 10 ГДж (более 1 ГДж в одном секторе), а максимальный ток варьируется от сотен ампер в цепи корректирующих магнитов до 13 кА в цепи основных магнитов. Большинство сверхпроводящих магнитов коллайдера LHC требуют защиты в случае перехода проводника в резистивное состояние (срыв сверхпроводимости). При этом основным элементом защиты является система вывода энергии из сверхпроводящих магнитов. Системы вывода энергии из основных магнитов БАК (поставлены ИФВЭ и ИЯФ СО РАН) Участие России и Украины в LHC

(слайдов: 40) 35 Системы вывода энергии из корректирующих магнитов БАК (поставлены ИЯФ СО РАН) Поставлено 225 таких систем! Участие России и Украины в LHC

(слайдов: 40) 36 Электрические распределительные боксы (DFB) обеспечивают буферный переход от "теплой" части электрической цепи питания магнитов к "холодной", т.е. сверхпроводящей части. Боксы представляют собой криостат, в который устанавливаются токовводы, непосредственно обеспечивающие переход высокотемпературной части к сверхпроводящей (токовводы описаны ниже). В ГНЦ ИФВЭ было изготовлено 52 криогенных DFB для LHC. ИЯФ СО РАН поставил токовводов: на 13 кА (64 шт.), 6 кА (258 шт.) и 600А (708 шт.). Участие России и Украины в LHC

(слайдов: 40) 37 В 2004 г. в ИЯФ была заказана установка для накопления и охлаждения тяжелых ионов свинца в накопителе LEIR, необходимых для LHC. Высокое качество электронного пучка позволили накопить нужное количество ионов свинца и обеспечить высокую светимость LHC в режиме ион-ионных столкновений. Установка электронного охлаждения Участие России и Украины в LHC

(слайдов: 40) 38 Рисунок демонстрирует измеренный профиль ионного пучка (сигнал с профилометра). Первоначально широкий ионный пучок инжектируется в LEIR и занимает практически всю разрешенную апертуру 50 мм. Затем пучок быстро охлаждается до размера около 2 мм, через 0.2 сек. происходит новая инжекция широкого (горячего) пучка, и он опять охлаждается. Далее охлаждаемый ток выключается, и накопленный пучок немного расширяется из-за внутрипучкового рассеяния. Участие России и Украины в LHC

(слайдов: 40) 39 Экономическая эффективность участия России и Украины после запуска коллайдера LHC и выхода его на реализацию физической программы чрезвычайно высока, поскольку российские и украинские высококвалифицированные ученые и инженеры имеют доступ к уникальному дорогостоящему оборудованию, к самым современным компьютерным технологиям, используют опыт и разработки мирового уровня при минимальных затратах бюджетных средств. Безусловно, это участие будет способствовать развитию критических технологий и инновационной деятельности, привлечет новые инвестиции в научные организации и промышленность. Очевидно, что результаты данного международного сотрудничества в области физики частиц будут использоваться для развития научных исследований и высоких технологий во многих приоритетных направлениях в силу их масштабности и универсальности. Участие России и Украины в LHC

(слайдов: 40) 40 Спасибо за внимание!

(слайдов: 40) 41 Литература Lyndon Evans. LHC Machine. CERN: The accelerator complex Simone Gilardoni (CERN-BE/ABP): Introduction to CERN/accelerators/LHC LHC Project Illustrations А.И. Ерохин. Вывод и рекуперация энергии в индуктивных и емкостных накопителях. Диссертация.