СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (САУ) исполнительные механизмы АПАЛ 38. Кочетков П.С. Автоматизация производства на базе ЭВТ_________________________.

Презентация:



Advertisements
Похожие презентации
«Стартер» «назначение, устройство и принцип работы« Подготовил студент группы 121-с Бабушкин Юрий.
Advertisements

Выполнил: ученик 9 «А» класса Сбежнев Дмитрий Петрович под руководством Сорокина Валерия Александровича 2012.
ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕННОГО ТОКА. Асинхронные машины Асинхронная машина – это бесколлекторная машина переменного тока, у которой при работе возбуждается.
Дифавтомат
МБОУ классическая гимназия 1 им. В. Г. Белинского Подготовил Ученик 8 класса «Б» Кузьмичёв Стас г. Пенза 2012.
Приводы промышленных роботов. Привод – это устройство, которое преобразует энергию (в робототехнике это, как правило, электрическая энергия) в физические.
8 класс Магнитные явления Урок 57 Действие магнитного поля на проводник с током Электродвигатель Шишко Лилия Витольдовна, ГБОУ гимназия 168 Санкт - Петербурга.
Магнитное поле катушки с током. Электромагниты. 8 класс.
Автоматизированные системы управления химико- технологическими процессами Доцент, к.т.н., Вильнина Анна Владимировна 1.
РЕГУЛЯТОР ДАВЛЕНИЯ ГАЗА ПРЯМОТОЧНЫЙ ПРОМЫШЛЕННОГО НАЗНАЧЕНИЯ VENIO-C.
Винтовой насос и принцип его работы Подготовил Ученик 11а класса Володин В. А.
Электродвигатели и их применение их применение Работа ученика 9- Г класс Темирова Эльвиса Мелитополь,2017.
Методическая разработка на тему: Презентация "Трансформатор"
Модели в переменных состояния Представление моделей в векторно-матричной форме.
Действие магнитного поля на проводник с током Электрический двигатель.
Motores | Automação | Energia | Tintas Принципы подбора двигателя для использования с частотным приводом.
Электрический ток вырабатывается в генераторах - устройствах, преобразующих энергию того или иного вида в электрическую энергию. Переменный ток можно.
Магнитное поле и его свойства 1. Магниты естественные искусственные 2. Свойства магнитов (1600 г. Гильберт) - два полюса северный N южный S - Fпритяжения.
Тема 8.2. Датчик давления КРАМС. Рис Датчик давления КРАМС (блок-схема). 1. Сильфон. 2. Рычаг. 3. Подвижный груз. 4. Шестерня редуктора (Ред.).
Катушки индуктивности Катушка индуктивности винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной.
Транксрипт:

СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ (САУ) исполнительные механизмы АПАЛ 38. Кочетков П.С. Автоматизация производства на базе ЭВТ_________________________

Электромагнитное реле - контактор Электрическая катушка Неподвижный сердечник Подвижный сердечник Электрические контакты пружина устройство Конспект урока

Принцип работы Эл. ток На катушку подается электрический ток. Электрический ток в катушке создает электромагнитное поле, которое намагничивает сердечник. Электромагнитное поле 1 Конспект урока

Эл. ток Силовые линии магнитного поля сердечника Вторичная электрическая цепь замкнута Принцип работы Рабочее состояние 2 Конспект урока

Вторичная электрическая цепь разомкнута Пружина возвращает подвижный сердечник в исходное состояние. Контакты вторичной цепи размыкаются Ток в катушке прерывается. Электромагнитное поле исчезает. 3 Конспект урока

Пример – контактор КМ1 Широкая область применения - Широкий диапазон рабочих температур от -40° до +50°С - Удобство замены втягивающей катушки - Варианты исполнения на 12 номинальных токов: 9, 12, 18, 25, 32, 40, 50, 65, 80, 95, 115, 150 А - Срок службы не менее 15 лет Конспект урока

Промышленные реле и контакторы Конспект урока

Электромагнитный клапан Электрическая катушка корпус Входной фланец Выходной фланец пружина Сердечник с клапаном Седло клапана устройство Конспект урока

Принцип работы Пружина прижимает сердечник с клапаном к седлу. Проход закрыт. Исходное положение. Ток в катушке не протекает. 1 Конспект урока

Электрический ток Электромагнитное поле Когда на катушку подается электрический ток, в ней возникает электромагнитное поле, которое намагничивает сердечник и сердечник втягивается в катушку сжимая пружину. Принцип работы 2 Конспект урока

Электрический ток Поток жидкости или газа Открывается проход потоку жидкости или газа Принцип работы 3 Конспект урока

При обесточивании катушки электромагнитное поле исчезает и пружина опускает клапан на седло. Проход закрывается. Принцип работы 4 Конспект урока

Примеры электромагнитных клапанов 2-х ходовой самоподпирающийся клапан Ду -15 до 50мм, давление 0,5-6 бар, температура от 0°C до +70°C Среда: щелочи, кислоты, окислители, солевые растворы, загрязненное масло 2-х и 3-х ходовые клапаны прямого действия Ду от 10 до 20мм, давление 0-1 бар, температура от -10°C до +70°C Среда: сжатый воздух, бытовой газ, вода, гидравлическое масло, загрязненные масло и жир, щелочи, кислоты, окислители, солевые растворы Burkert тип131 Burkert тип142 Конспект урока

электропривод устройство электродвигатель Рабочий рычаг редуктор Тормоз электрический Конспект урока

Принцип работы На двигатель подается электрический ток. Двигатель вращается и вращает первичный вал редуктора. Электрический ток Исходное положение Конспект урока

Рычаг, закрепленный на выходном валу редуктора, поворачивается и перемещает рабочий орган. Электрический ток Новое положение Принцип работы Конспект урока

Пример электропривода МЭО-40/10-0,25-99 Состав механизма: электродвигатель синхронный тормоз механический редуктор червячный ручной привод блок сигнализации положения реостатный БСПР, индуктивный БСПИ, токовый БСПТ или блок концевых выключателей БКВ рычаг блок конденсаторов Основные технические характеристики К рутящий момент на выходном валу - 40 Нм Время полного хода выходного вала - 19 с Значение полного хода выходного вала -0,25 рад Потребляемая мощность – 240 Вт Конспект урока

Пример сервопривода Управляющее устройство сервопривода Электродвигатель Входы для подключения датчиков положения Конспект урока

Исполнительные механизмы являются как бы руками управляющего устройства, с помощью которых оно воздействует на вход объекта управления. Устройство и принцип действия исполнительных механизмов сильно зависит от характера требуемого воздействия и от самого входа объекта. Тем не менее, существуют множество стандартизованных исполнительных устройств автоматики. Рассмотрим некоторые из них. Электромагнитное реле – контактор. На металлическом сердечнике находится электрическая катушка. Подвижный сердечник соединен с неподвижным шарниром и удерживается в исходном состоянии пружиной. Рядом с подвижным сердечником расположена пара контактов. В исходном состоянии контакты разомкнуты. При подаче электрического тока в катушку в ней возникает электромагнитное поле, которое намагничивает сердечник. Подвижный сердечник притягивается магнитным полем к неподвижному, при этом он перемещает контакты и замыкает их. В таком состоянии реле может находиться настолько долго, пока в катушке течет электрический ток. Кода ток в катушке прекращается, магнитное поле исчезает, пружина возвращает подвижный сердечник в исходное положение и освобождает контакты, которые размыкаются. Например, катушка контактора получает управляющий сигнал в виде постоянного напряжения от устройства управления, а своими контактами включает и выключает электрический ток печи. Контакторы различаются по количеству контактов, коммутируемому току и напряжению катушки. вернуться

Электромагнитный клапан. Клапан представляет собой механический клапан и электромагнит, сердечник которого соединен с клапаном. В исходном состоянии пружина давит на сердечник и прижимает клапан к седлу. Проход закрыт. При подаче электрического тока на катушку в ней возникает электромагнитное поле, которое втягивает в катушку сердечник. Сердечник поднимает клапан и проход открывается. Пока по катушке течет электрический ток, клапан будет открыт. При снятии с катушки тока электромагнитное поле исчезает, пружина прижимает сердечник и клапан к седлу. Проход закрывается. Клапаны используются для управления потоками жидкости и газа. Клапаны различаются по сечению трубопровода, давлению среды, напряжению катушки.. вернуться

Электропривод Этот исполнительный механизм используется для механического перемещения рабочих органов объекта управления, например, суппорта станка. Состоит из электрического двигателя, механического редуктора, электромагнитного тормоза и рычага, который и осуществляет перемещение рабочего органа. В некоторых электроприводах имеются датчики конечных положений рабочего рычага. Редуктор служит для уменьшения числа оборотов от первичного вала ко вторичному. Тормоз нужен для точной остановки вращения первичного вала и исключает свободное вращение по инерции, что вносило бы погрешность в позиционирование рабочего рычага на выходном валу механизма. В исходном положении тормоз фиксирует вал редуктора. Положение рабочего рычага при этом в пространстве остается фиксированным. При подаче электрического напряжения на электродвигатель одновременно подается напряжение и на электромагнитный тормоз. Тормоз отпускает вал и двигатель вращает вал редукторы. При этом рабочий рычаг на выходном валу поворачивается и перемещает рабочий орган в нужное положение. Электроприводы различаются в зависимости от конструкции на простые, которые могут перемещать рабочий орган из крайнего положения в другое крайнее и на сервоприводы, которые могут перемещать рабочий орган в любое положение в зависимости от управляющего сигнала и определять положение органа в пространстве. Итак, мы с Вами сегодня познакомились с некоторыми исполнительными механизмами, которые используются для построения систем автоматического управления вернуться