Министерство образования и науки российской федерации Владивостокский государственный университет экономики и сервиса Институт информатики, инноваций и.

Презентация:



Advertisements
Похожие презентации
Для учеников 8 класса школы 39. Наибольшую трудность вызывает поиск неисправностей в сложных разветвленных многоэлементных электронных схемах. Предлагаемые.
Advertisements

Тема 9. Экономические взаимоотношения в процессе подтверждения соответствия. Кафедра ТВЭ Преподаватель: Стукун Валентина Павловна.
Проектирование технологических процессов Обеспечение качества технологий и изделий Лекция 4 от 3 марта.
Азербайджанский Государственный Экономический Универститет Факультет: Товароведение Предмет: Основы сертификации Презентация на тему: Сертификационные.
ГОСТЕХКОМИССИЯ РОССИИ РУКОВОДЯЩИЙ ДОКУМЕНТ Защита от несанкционированного доступа к информации.
Согласно ГОСТ метрологическая экспертиза (МЭ) – это анализ и оценка технических решений по выбору параметров, подлежащих измерениям, установлению.
Начальник отдела экспертизы ФГБУ «ВНИИИМТ» Росздравнадзора Никифорова Лариса Юрьевна.
Проектирование технологических процессов Лекция Julia Kjahrenova1.
1 6. Конструирование с учетом надежности Основные понятия и определения Надёжность – это способность объекта сохранять во времени в установленных.
Тема 3. Статические и динамические характеристики измерительных каналов Содержание 1 Принципы выбора и нормирования метрологических характеристик средств.
Выполнила студентка гр. 13- ТБ - УК 1 Шиян Ирина.
Группа: Выполнили: МЕТОДИКИ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ.
«Технико-экономический анализ деятельности предприятия» Гиндуллина Тамара Камильевна, к.т.н., доцент кафедры АСУ.
Инновационный Евразийский Университет Кафедра «Стандартизация и технологическое оборудование» Слайд-лекция 9 по дисциплине «Статистические методы управления.
«Технико-экономический анализ деятельности предприятия» Гиндуллина Тамара Камильевна, к.т.н., доцент кафедры АСУ.
Основы построения телекоммуникационных систем и сетей Лекция 16 «Методы оценки надежности» профессор Соколов Н.А.
Инновационный Евразийский Университет Кафедра «Стандартизация и технологическое оборудование» Слайд-лекция 13 по дисциплине «Статистические методы управления.
Производственный процесс – это совокупность всех действий людей и орудий труда, направленных на превращение сырья и материалов в готовую продукцию.
«Моя профессия – автоматизация технологических процессов и производств» Государственное бюджетное образовательное учреждение среднего профессионального.
Прогнозирование сложности проектирования заказных программных продуктов Презентация на тему: Проверил: Б.М.МихайловВыполнил: Д.Ю.Ермилов 2017.
Транксрипт:

Министерство образования и науки российской федерации Владивостокский государственный университет экономики и сервиса Институт информатики, инноваций и бизнес систем Кафедра электроники «Основы проектирования и организации производства радиоэлектронной техники» Лекция «РЕГУЛИРОВКА, КОНТРОЛЬ И ИСПЫТАНИЕ РЭА» Ведущий преподаватель: Белоус И.А. Владивосток, 2014

СОДЕРЖАНИЕ 1. Технологические операции регулировки и настройки. 2. Контроль и диагностика радиоэлектронной аппаратуры. 3. Неисправности аппаратуры и их устранение. 4. Испытания радиоэлектронной аппаратуры.

ЛИТЕРАТУРА 1. Ивченко В.Г. Конструирование и технология ЭВМ. Конспект лекций. - /Таганрог: ТГРУ, Кафедра конструирования электронных средств. – – 2. Конструкторско-технологическое проектирование электронной аппаратуры: Учебник для вузов. – М.: Изд. МГТУ им. Н.Э. Баумана, – 528 с. 3. Технология приборостроения: Учебник / Под общей редакцией проф. И.П.Бушминского. – М.: МГТУ им. Н.Э.Баумана. 4. Тупик В.А. Технология и организация производства радиоэлектронной аппаратуры. – СПб: Издательство: СПбГЭТУ "ЛЭТИ" – 2004.

1. ТЕХНОЛОГИЧЕСКИЕ ОПЕРАЦИИ РЕГУЛИРОВКИ И НАСТРОЙКИ Методы выполнения РНО Различают эксплуатационную и заводскую регулировку. При опытном производстве процесс регулировки может сопровождаться частичным изме­нением схемы и конструкции образца. В серийном производстве процесс регулировки разбивают на ряд простых операций с предварительной регулировкой отдельных сборочных единиц, что позволяет сократить трудоемкость работ и оснастить процесс регулировки специальны­ми приборами.

При регулировке допускается метод предусмотренного схемой подбора резисторов, конденсаторов и других элементов. Подбор электронных, полупроводниковых, механических приборов для получения оптимальных параметров не допускается. Регулировку проводят на специализированных установках по измерительным приборам или сравнением настраиваемого изделия с эталонным образцом (ме­тод электрического копирования). В серийном и массовом производстве чаще применяют метод элек­трического копирования с использованием более простой измерительной аппаратуры.

Технологический процесс регулировки РЭА разбивают на ряд этапов. На первом этапе изделие подвергают тряске на вибрационном стенде для удаления посторонних предметов и выявления имеющихся неплотных соединений. На втором этапе проверяют правильность монтажа. Для этого предва­рительно составляют карты или таблицы, охватывающие все цепи прове­ряемого устройства. На третьем этапе проверяют режимы работы микросхем (МС), полу­проводниковых приборов. Проверку ре­жимов начинают с источников питания. На четвертом этапе проверяют функционирование устройства в целом и регулировку для получения заданных характеристик по ТУ.

Виды и перечень документации, необходимой для проведения регули­ровочных работ, определяются программой выпуска и сложностью изделия. В единичном производстве регулировку можно проводить по электрической схеме с учетом требований ТУ. Для регулировки сложных изделий и в мас­совом производстве создают документацию, исключающую ошибки и со­кращающую трудоемкость выполняемых работ.

При регулировке простых устройств и в массовом производстве ис­пользуются технологические карты, в которых указаны методика и порядок регулировки, измерительная аппаратура, инструмент и т. д. Наиболее часто для регулировочных работ используют технологиче­скую инструкцию, которая содержит перечень измерительной и регулировочной аппаратуры, приспособлений и инстру­мента, методику процесса регулировки и его последовательность, характер­ные неисправности и способы их обнаружения и устранения, порядок сдачи отрегулированного узла и указания по технике безопасности.

Порядок оформления технологических карт и технологических инст­рукций определяет стандарт ЕСТД (Правила оформления документов общего назначения). Все РНО можно классифицировать по тем признакам, которые приме­няют в качестве критериев выполнения задач. По виду оптимизируемой функции качества процессы регулировки подразделяются на процессы, оптимизирующие обобщенные, частные или комбинированные функции качества системы.

Частные функции являются логической или анали­ тической зависимостью между фазовыми координатами настраиваемой сис­темы в определенном типовом режиме работы и информационными сигналами. Обобщенные функции качества составляют логическую или аналити­ческую зависимость между регулируемыми координатами системы для различных режимов ра­боты и информационными сигналами. Комбинированные функции качества являются сочетаниями обоб­щенных и частных функций качества.

В зависимости от метода поиска экстремума функции качества РНО раз­деляются на процессы, использующие принципы поисковой настройки, анали­тической настройки или сочетания принципов поисковой и аналитической. При поисковой настройке изменение варьируемых па­ раметров настраиваемой системы проводится в результате поиска условий экстремума оптимизируемой функции качества. Для пробных изменений параметров системы и последующего анализа результатов этих изменений необходимо вводить пробные (тестовые) сигналы.

Поисковые системы ре­гулировки по способу поиска экстремума можно разделить на системы с независимым поиском, когда абсолютные значения скоростей изменения варьируемых параметров не зависят от отклонения текущего значения функции качества от экстремального значения, и системы с зависимым поиском, когда скорости изменения варьируемых параметров являются функциями отклонения текущего значения оптимизи­руемой функции качества от экстремального значения.

По организации движения к экстремуму поисковые системы регули­ровки делят на системы с разнесенными пробными и рабочими шагами и сис­ темы с совмещенными пробными и рабочими шагами. В первом случае при пробном шаге определяются направления изме­нения варьируемых параметров, а при рабочем шаге проводится изменение варьи­руемых параметров. Во втором случае изменяются варьируемые параметры с одновременной оценкой влияния этих изменений на оптимизируемую функцию качества.

В аналитических (беспоисковых) системах регулировки для получе­ния информации о состоянии системы, как правило, исполь­зуются стимулирующие сигналы, имитирующие реальные сигналы, посту­пающие в систему в процессе функционирования, или специальные пробные сигналы. По виду использования дополнительной информации они делятся на системы, использующие ин­формацию о входном воздействии, частотных и временных характеристи­ках, процессах на границах устойчивости и комбинированную с использо­ванием сочетаний указанных выше видов информации.

Критерии оценки качества РНО Для того чтобы судить о качестве выполнения РНО, необходимо иметь критерий оценки качества. Характеристикой качества РНО могут служить функции распределе­ния погрешностей регулировки изделий или распределения их параметров с учетом установленного поля допуска. Установлены некоторые закономерности формирования выходных параметров в зависимости от особенностей электрических схем. Только не­большую часть распределений выходных параметров можно считать нор­мальными.

Реальные распределения выходных параметров отличаются ме­жду собой и от нормальных главным образом из-за асимметричности и островершинности. Эти качественные характеристики распределений, оцениваемые коэффициентами асимметрии и эксцесса, использованы в ка­честве критериев при анализе электрических схем и выполнении РНО с уче­том получаемых распределений.

В электрических схемах, где РНО осуществляются элементами на­стройки с плавно изменяющимися параметрами (потенциометры, переменные конденсаторы, подстроечные индуктивности), функции распределения выходных параметров хорошо согласуются с законом нормального распре­деления. Математическое ожидание таких распределений при отсутствии систематических погрешностей аппаратуры близко к номиналь­ному значению параметра. Разброс выходных параметров настроенных из­делий, характеризующийся средним квадратическим отклонением, во мно­гом определяется случайными погрешностями измерений.

Значения коэф­фициентов асимметрии и эксцесса близки к нулю. При РНО электрических схем подбором элементов, имеющих дискретные и плавно изменяющиеся параметры, получаемые распределения характеризуются заметными асимметричностью и эксцессом. Еще большую асимметричность и островершинность могут иметь распределения выходных параметров изделий, в которых РНО осуществля­ются подбором элементов с дискретными параметрами.

Взаимозависимые РНО выполняют посредством подбора параметров двух или более элементов, один из которых может быть общим для не­скольких независимых электрических цепей. Сюда входят многопредельные схемы делителей сигналов с частотной компенсацией, различные схемы генераторов фиксированных частот, имеющие общие эле­менты колебательных контуров, многопредельные задающие временные устройства. В таких схемах перестройка или замена элементов отражается на всех параметрах изделия, зависящих от этих элементов. Эта особенность взаимозависимых регулировочных операций - одна из причин значитель­ного отклонения получаемых распределений от нормальных.

Математиче­ское ожидание выходных параметров может сильно отличаться от номи­нального значения. Асимметричность распределений явно выражена и мо­ жет быть как право-, так и левосторонней. В большинстве случаев знак асимметрии определяется порядком проведения настройки схемы, который при взаимозависимых РНО строго определен технологическими инструк­циями. Эксцесс, как правило, положителен, что может быть объяснено стремлением регулировщика установить пара­метры схемы как можно ближе к номинальному значению. При взаимозависимых РНО практически исчезает разница между шири­ной поля допуска и фактическим рассеянием параметров после настройки изделий.

Из вышесказанного можно сделать следующие выводы: - на формирование распределений выходных параметров изделий существенное влияние оказывают особенности электрических схем и РНО. Выходные параметры могут быть сгруппированы по принципу подобия по­лучаемых распределений с установлением пределов изменения их числен­ных характеристик; - при двустороннем ограничении параметров допусковыми значениями получаемые распределения в большинстве своем представляют собой одномодальные усеченные распределения, отличающиеся от нормальных асимметричностью и островершинностью; - обособленные РНО, осуществляемые элементами с плавно изме­няющимися параметрами, характеризуются распределениями, близкими к нормальным, ширина поля рассеяния которых существенно меньше ширины поля установленного допуска.

2. КОНТРОЛЬ И ДИАГНОСТИКА РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ Контроль в процессе производства РЭА Качество РЭА, как совокупность свойств, определяющих способность изделий удовлетворять заданным требованиям потребителя, закла­дывается в процессе разработки и изготовления продукции, а объективно оценива­ется в процессе эксплуатации. Однако получаемая при этом информация является, во- первых, недостаточной, поскольку не все параметры РЭА, измеряются в условиях эксплуатации, а во- вторых, - запоздалой, так как на изготовление РЭА уже затрачены большие средства. Эта проблема усугубляется по мере дальнейшей микроминиатю­ ризации РЭА, когда целые блоки выполняются в виде интегральных микро­схем, которые являются неремонтопригодными.

Одним из методов оценки качества служат теоретические расчеты. Однако расчетные оценки нуждаются в экспериментальном подтверждении, так как исходные данные и модели являются приближенными. С развитием микроминиатюризации и усложнением РЭА создание адекватных моделей становится проблематичным. В этой связи существенный объем информа­ции о качестве РЭА получают путем контроля их параметров и проведения испытаний на всех этапах, начиная с разработки нормативно-технической документации и кончая анализом рекламаций и заключений потреби­теля о качестве готовых изделий.

Виды процессов контроля Согласно ЕСТПП (Виды процессов кон­троля) устанавливаются следующие виды процессов тех­ нологического контроля: по унификации (единичный, унифицированный); по освоению процесса (рабочий, перспективный); по степени регламентации действий, устанавливаемых в документа­ции (маршрутный, операционный, маршрутно-операционный).

Принадлежность процесса к единичному или унифицированному оп­ределяется количеством наименований объектов контроля, охватываемых процессом (один или группа однотипных или разнотипных объектов кон­троля). Единичный процесс контроля применяют для изделий одного наиме­нования, типоразмера и исполнения, а также для технологических процессов одного содержания. Унифицированный процесс контроля используют в качестве рабочего процесса контроля при наличии в документации описания всех операций, как информационную основу при разработке рабочего процесса контроля, как базу для разработки стандартов на типовые процессы контроля.

Рабочий процесс контроля используется для конкретных объектов в соответствии с требованиями рабочей технической документации. Перспективный процесс контроля разрабатывается, как информацион­ная основа для рабочих процессов контроля при переоснащении производ­ства и рассчитан на применение более совершенных методов контроля, бо­лее производительных средств контроля. Применение маршрутного, операционного или маршрутно-операционного процесса контроля устанавливается в отраслевых стандартах или в стандартах предприятия на следующие объекты кон­ троля: материал, полуфабрикат, заготовка, деталь, сборочная единица, ком­плекс, комплект, технологический процесс.

При контроле материала, полуфабриката, заготовки и детали в состав контролируемых объектов включены: марка материала (кроме объекта де­таль), геометрические и физико-химические параметры, внешние и внутренние дефекты, клейма (кроме объекта материал). Для сборочной единицы, комплекса и комплекта предусмотрен контроль геометрических и функцио­ нальных параметров, внешних и внутренних дефектов и клейм, а для технологического процесса контроль качественных и количественных характе­ристик. Следует также подвергать проверке упаковку, комплектность, кон­сервацию и сопроводительную документацию, если это предусмотрено ТУ.

При контроле технологических процессов допускается проверка па­раметров вспомогательных материалов, средств технологического оснаще­ния, в том числе средств контроля, технологической дисциплины, точности и стабильности ТП, характеристики внешних условий. Процессы контроля должны обеспечивать решение задач, установлен­ных для входного, операционного и приемочного контроля, и охватывать весь ТП и его результаты При входном контроле решают задачи проверки соответствия качест­ва материалов, полуфабрикатов, заготовок, комплектующих деталей и сбо­рочных единиц требованиям, установленным в стандартах, ТУ, договорах о поставках.

При операционном контроле решают задачи проверки соответствия контролируемых признаков деталей и сборочных единиц в процессе изго­товления предъявляемым к ним требованиям, а также выявляют количест­венные и качественные характеристики ТП. Операционный контроль осу­ществляет исполнитель операции (рабочий, бригадир, испытатель), руково­ дитель участка (мастер, старший мастер), контролер или мастер отдела технического контроля.

При приемочном контроле решают задачи проверки соответствия ка­чества готовых изделий требованиям, установленным в нормативно-технической документации, в том числе комплектность, упаковку и консер­вацию изделий, ее пригодность к транспортированию и использованию. Приемочный контроль осуществляют контролер, мастер ОТК и (при необ­ходимости) представитель заказчика.

Процессы контроля Процессы контроля подразделяют на четыре категории. По полноте охвата любая катего­рия контроля подразделяется на сплошной и выборочный контроль, а по связи с объектом контроля на непрерывный, периодический и летучий. Сплошной контроль применяют в условиях особо высоких требований к уровню качества изделий, у которых недопустим пропуск де­фектов в дальнейшее производство или эксплуатацию.

Выборочный контроль применяют для изделий, когда их количество достаточно для получения представительных выборок, при большой трудоемкости контроля, при контроле с разрушением изделий, и на операциях, выполняемых на авто­матических и поточных линиях. Непрерывный контроль применяют для проверки ТП при необходимости постоянного обеспечения определенных ко­личественных и качественных характеристик. Как правило, используют ав­ томатические или полуавтоматические средства контроля. Периодический контроль (сплошной или выборочный) применяют для проверки изделий и ТП при установившемся производстве и стабильных ТП. Летучий контроль (только выборочный) применяют для малоответст­венных изделий и ТП.

Технический контроль Стандарт ЕСТПП (Правила разработки процессов контроля) устанавливает основные положения и этапы разработки процес­сов и операций технического контроля, а также задачи на этапах их разра­ботки при технологической подготовке производства. Технический контроль (ТК) является неотъемлемой составной частью ТП изготовления изделия и разрабатывается в виде процесса или операции ТК. Под техническим контролем понимается совокупность технологических операций ТК, выполняемых при изготовлении изделия и его составной час­ти. Процессы ТК разрабатываются для входного контроля материалов, заго­товок, полуфабрикатов, а также комплектующих деталей и сборочных еди­ниц; операционного контроля деталей и сборочных единиц; приемочного контроля изделий.

Операции ТК разрабатывают для входного контроля несложных объ­ектов, операционного контроля ТП или обрабатываемой заготовки после завершения определенной технологической операции. Процессы (операции) ТК разрабатывают вместе с ТП изготовления изделия с обеспечением необ­ходимой взаимосвязи и взаимодействия между ними. При разработке процессов (операций) ТК необходимо обеспечить един­ство конструкторских, технологических и измерительных баз. Операции ТК должны предусматривать получение информации для регулирования ТП, а также обеспечивать предупреждение с заданной вероятностью пропуска де­фектных материалов, заготовок, полуфабрикатов, деталей и сборочных еди­ ниц для последующего изготовления изделия.

Нормативно-технические документы на ТК в общем случае включают стандарты «Технический контроль. Термины и определения», «Средства контроля. Термины и определения», «Правила разработки процессов (опе­раций) технического контроля», «Правила выбора средств контроля»; клас­сификатор объектов контроля; классификатор технологических операций технического контроля;

методику выбора объектов контроля; методику размещения постов контроля по технологическому процессу изготовления и ремонта изделий; методику выбора контролируемых параметров; методику выбора схемы контроля; методику выбора метода контроля; стандарты ти­повых процессов (операций) технического контроля.

Методы контроля и диагностики При использовании современной элементной базы, и особенно микропроцессоров, проблемы настройки и регулировки в традиционном понимании практически отсутствуют. Контроль, диагностику и настрой­ку РЭА проводят программными и аппаратными методами. Предприятия разрабаты­вают специальные инструкции для пользователей и диагностические программы, которые прилагаются к изделиям в виде технического описания, инструкции пользователя, встроенного программного обеспечения или специальных программ на носителях ин­формации.

Их можно условно подразделить на три группы: POST (Power-On Self Test процеду­ра самопроверки при включении), специализированные и общего назначе­ ния. Сложность программ и их потенциальные возможности на каждой по­следующей ступени, как правило, возрастают. Программы POST представляют собой последовательность коротких программ «зашитых» в ПЗУ, предназначены для проверки основных компо­ нентов системы непосредственно после ее включения и запускаются при включении системы. Обычно проверяются центральный процессор, ПЗУ, системные платы, оперативная память и ос­новные периферийные устройства.

Эти тесты выполняются быстро и не слишком тщательно по сравнению с диагностическими программами, запи­санными на дисках. Если при выполнении процедуры POST обнаруживается неисправный компонент системы, то выдается сообщение об ошибке или предупредительный сигнал. Если неисправность достаточно серьезная ("фатальная ошибка"), то даль­нейшая загрузка системы приостанавливается и выдается сообщение, по которому можно определить причину возник­шей неисправности. Обычно предусматривается три способа индикации неисправности: звуковые сигналы, сообщения на экран монитора, и шестнадцатеричные коды, посылаемые по адре­сам портов ввода/вывода.

Специализированные диагностические программы - это наборы тестов для «тотальной» проверки всех компонентов систем и сложных приборов, которые записываются на отдельном диагностическом диске. Диагностические программы изготовителей обычно преду­смотрены двух уровней. Первый уровень это общая диагностика, ко­торая ориентирована на пользователей. Так как процедуры поиска неисправностей в большинстве современных систем достаточно просты, у пользователей обычно не возникает сложностей при работе с программами общей диагностики. Второй уровень технический, и рассчитан на спе­ циалистов. Сообщения об ошибках обычно выводятся в виде кодов, по которым можно определить причину неисправности или сузить круг ее поисков.

3. НЕИСПРАВНОСТИ АППАРАТУРЫ И ИХ УСТРАНЕНИЕ Виды неисправностей аппаратуры Неисправность РЭА проявляется в виде искажения выходной информа­ции или ее отсутствии при наличии входного сигнала. Источником неисправности могут быть один или несколько элементов, а также внешние воздействия и факторы - пыль, влага, и т. д. Каждый элемент РЭА оказывает влияние на формирование выходных параметров. Зави­симость между состояниями элементов РЭА и выходными параметрами носит неоднозначный характер. Большинство элементов влияет сразу на не­ сколько параметров, а сами параметры могут зависеть от многих элементов.

Работу РЭА можно оценивать различными показателями: физическим состоянием элементов (оценивается внешним осмотром); качеством выдаваемой информации; формой и значением напряжений в различных точках (оцениваются по показаниям измерительных приборов). Начинать поиск неисправностей необходимо с обнаружения сущест­венных противоречий в этих показателях. На определении этих противоре­чий основаны все методы поиска неисправностей.

Следует иметь в виду, что ремонт РЭА может быть неоправданным, если аппаратура: морально устарела, для нее не выпускают запасные детали, а установка нетиповых деталей требует значительных затрат времени, дора­ботки конструкции и пр.; физически устарела, в ней заметно проявляются процессы старе­ния материалов, снижение диэлектрических показателей изолирующих мате­ риалов, старение паек, высыхание оксидных конденсаторов и пр.; имела механические повреждения в результате удара, падения или подвергалась химическим воздействиям (попадание морской воды внутрь корпуса и др.).

Классификация дефектов РЭА Любой дефект, проявляющийся в РЭА, нарушает ее нормальную рабо­ту. Однако дефекты неравноценны, поэтому целесообразно установить по­следовательность их поиска и устранения, исходя из значимости. По сложности обнаружения различают дефекты: простые, когда дефект очевиден и легко устраним; несложные, когда дефект легко отыски­вается, однако устранение его затруднено; сложные, когда дефект непросто отыскать, но легко устра­нить (плохая пайка, контакт нарушается лишь с прогревом изде­лия); очень сложные, когда дефект трудно отыскать и устранить (случайные ме­жэлектродные замыкания).

По особенностям проявления различают дефекты: постоян­но проявляющиеся; непостоянные (время от времени без явных причин); проявляющиеся или пропадающие в процессе прогрева, при механических или других воздействиях; самоустраняющиеся. По внешнему проявлению различают дефекты, связанные: с отсутствием какого-либо параметра РЭА; с несоответствием какого-либо па­раметра норме; с появлением на выходе нежелательных сигналов.

По причинам возникновения дефекты бывают случайные или детерминированные, т. е. вполне определенные, которые можно было преду­смотреть. К детерминированным дефектам относятся: недостатки конструкции, заложенные при разработке: малона­дежные элементы; элементы, эксплуатирующиеся в режимах, близких к предельно допустимым; конструктивные решения, не обеспечивающие надежность контактных соединений, и т.п.

нарушение технологической дисциплины при изготовлении РЭА (непропаи, качество монтажа и т. п.); нарушение условий эксплуатации: попадание внутрь РЭА влаги, пыли, насекомых, посторонних предметов; механические повреждения и т.п. неквалифицированное вмешательство в конструкцию РЭА: впаяны транзисторы другого типа, установлены дефектные элементы и пр.

Способы поиска неисправностей Можно выделить три уровня поиска неисправностей и ремонта изделий: плата, ИС, схема в целом. На уровне плат заменяют подозрительную ПП. На уровне ИС опреде­ляют и заменяют дефектную ИС или компонент. На уровне схемы опреде­ляют точную причину неисправности. Проще всего заменить всю дефектную плату. Труднее всего точно найти и заменить де­ фектную ИС.

Ремонт и отладка плат При ремонте электронного оборудования необходимо руково­дствоваться следующими принципами: 1. Любые действия, связанные с ремонтом электронного оборудова­ния, предваряются отключением питания. 2. Выводы о неисправностях должны делаться после того, как установлено, что все элементы коммутации и разъемы подключены пра­вильно и имеют контакт, а кабели не имеют обрывов. 3. Поскольку большинство электронных модулей построены на комплементарной МОП-технологии, критичных к стати­ческому пробою, перед доступом к узлам электроники следует снять с тела статический заряд, коснувшись технологического корпуса.

4. В силу разрушительного действия переходных процессов временная задержка между отключением и последующим включе­нием питания должна составлять не менее 30 с. 5. При ремонте не следует обрывать нагрузку. Это создает повышенную мощность рассеивания на выходном активном элементе либо искажает картину снимаемых параметров. Иллюзию неработающего источника часто создает чрезмерная нагруз­ка. Если возможно, следует посекционно отключать потребители (последовательное изъятие карт из слотов, с отключением блока питания). Замеры питающего на­пряжения лучше проводить на самих ИС или после переходных разъемов.

4. ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ Цели испытаний Испытания РЭА представляют собой экспериментальное определение при различных воздействиях количественных и качественных характеристик изделий при их функционировании. При этом как сами испытываемые изделия, так и воздействия могут быть смоделированы. Цели испытаний различны на различных этапах проектирования и изготовления РЭА.

К основным целям испытания, общим для всех видов РЭА, можно отнести: выбор оптимальных конструктивно-технологических решений при создании новых изделий; доводку изделий до необходимого уровня качества; объективную оценку качества изделий при их постановке на производство, в процессе производства и при техническом обслуживании; прогнозирование гарантированного срока службы. Испытания служат эффективным средством выявления скрытых случайных дефектов материалов и элементов конструкции, не обнаруженных методами технического контроля.

По результатам испытаний изделий в производстве разработчик РЭА устанавливает причины снижения качества. Если эти причины установить не удается, совершенствуют методы и средства контроля изделий и ТП их изготовления. На конечных этапах ТП изготовления изделий могут проводиться предварительные испытания. Для них выбирают такие режимы, чтобы они обеспечивали отказы изделий, содержащих скрытые дефекты, и в то же время не вырабатывали ресурса тех изделий, которые не содержат дефектов. Эти испытания часто называют технологическими тренировками (термотоковая тренировка, электротренировка, тренировка термоциклами и др.).

Категории испытаний Программа и методы проведения испытаний определяются конкретным видом и назначением РЭА, а также условиями эксплуатации. Для контроля качества и приемки изделий устанавливают основные категории контрольных испытаний, оговоренные в ТУ: приемо-сдаточные, периодические и типовые. Каждая категория испытаний может включать несколько видов испытаний (электрические, механические, климатические, на надежность и др.) и видов контроля (визуальный, инструментальный и др.).

В зависимости от особенностей эксплуатации и назначения изделий, а также специфики их производства некоторые виды испытаний выделяют в отдельные категории испытаний (на надежность – безотказность, долговечность, сохраняемость и др.). Виды испытаний и контроля, последовательность проведения, проверяемые параметры и их значения устанавливаются в нормативных документах (стандартах, программах, методиках и др.).

Во время испытаний применяют сплошной или выборочный контроль. Результаты испытаний считаются отрицательными, если обнаружено несоответствие изделия хотя бы одному требованию ТУ для проводимой категории испытаний. Применяемые средства испытаний, измерения и контроля, а также методики измерений должны соответствовать требованиям метрологического обеспечения. Средства испытаний должны иметь метрологическую аттестацию.

Приемо-сдаточные испытания (ПСИ) проводят для контроля изделия на соответствие требованиям ТУ, установленным для данной категории испытаний. Испытания и приемку проводит представитель заказчика в присутствии представителя отдела технического контроля (ОТК) предприятия- изготовителя в объеме и последовательности, предусмотренными в ТУ на изделие. О готовности изделия к ПСИ предприятие - изготовитель уведомляет представителя заказчика извещением, оформленным в установленном порядке.

К извещению прикладываются протоколы технологической тренировки и предъявительских испытаний, выполненных по форме, принятой на предприятии-изготовителе. Состав и последовательность проведения испытаний могут быть изменены по согласованию с представителем заказчика. Принятыми считаются изделия, выдержавшие испытания, укомплектованные и упакованные в соответствии с ТУ.

Периодические испытания проводят с целью периодического контроля стабильности ТП в период между испытаниями и подтверждения возможности продолжения изготовления изделий по действующим конструкторской и технологической документации. Календарные сроки испытаний устанавливаются в графике, составленном предприятием- изготовителем с участием представителя заказчика. Периодическим испытаниям подвергается одно изделие ежегодно. Результаты испытаний оформляются актом, к которому прилагается протокол, выполненный по форме, принятой на предприятии-изготовителе.

Состав и последовательность проведения испытаний согласовываются с представителем заказчика. Если изделие выдержало периодические испытания, то его производство продолжается до следующего срока испытаний. Если изделие не выдержало периодических испытаний, то приемку изделий и отгрузку принятых изделий приостанавливают до выявления и устранения причин возникновения дефектов и получения положительных результатов повторных испытаний.

Типовые испытания проводят для изделий прерывистого производства (единичного и мелкосерийного прерывистого производства) для оценки эффективности и целесообразности предлагающихся изменений в изделие или технологию его изготовления, которые могут изменить технические и другие характеристики изделия и его эксплуатацию. Испытания проводят на изделиях, в которые внесены предлагающиеся изменения, по программе и методике необходимых испытаний из состава приемо-сдаточных и периодических. Если эффективность и целесообразность предлагаемых изменений подтверждается результатами типовых испытаний, то их вносят в соответствующую документацию на изделие в соответствии с требованиями Государственных стандартов.

Перед предъявлением изделий на испытания и приемку представителю заказчика ОТК проводит предъявительские испытания готовых изделий. Испытания проводятся с целью контроля изделий на соответствие требованиям ТУ и готовности для предъявления заказчику. Как правило, их проводят в объеме не менее приемосдаточных испытаний, но планы контроля и нормы на проверяемые параметры могут устанавливаться более жесткими. Документация по испытаниям согласуется с заказчиком.

Предъявительские испытания. Перед предъявлением изделий на испытания и приемку представителю заказчика проводит предъяви­тельские испытания изделий. Испытания проводятся с целью контроля изделий на соответствие требованиям ТУ и проверки готовности для предъ­явления заказчику. Проводят в объеме не менее приемо­-сдаточных испытаний, но планы контроля и нормы на проверяемые параметры могут устанавливаться более жесткими. Документация по испытани­ям согласуется с заказчиком. Кроме перечисленных выше основных категорий испытаний сущест­ вуют квалификационные испытания по приемке установочной серии, испы­тания на долговечность и проверочные испытания (проводит научно-исследовательская организация заказчика).

Программа испытаний Основным организационно-методическим документом при испытаниях РЭА является программа испытаний. Программа испытаний регламентирует: цели испытаний; объем и методику проводимых исследований; порядок, условия, место и сроки проведения испытаний; ответственность за обеспечение и проведение испытаний; ответственность за оформление протоколов и отчетов.

Общие цели контрольных, сравнительных и определительных испытаний, общие положения об испытаниях на воздействие механических и климатических факторов конкретизированы в Государственных стандартах. В программе испытаний в краткой форме излагается информация об объекте испытания (срок его изготовления, номер паспорта, особенность конструкции и технологии изготовления и т. п.), а также параметры, подлежащие прямому или косвенному измерению, критерии годности изделия РЭА, требования к внешнему виду и электрические параметры.

В разделах программы испытаний указывают: объем и методику испытаний, в которых даются сведения о количестве испытываемых изделий, общая продолжительность испытаний при различных воздействующих факторах, о периодичности, составе и последовательности испытаний, о параметрах испытательных режимов, пределах изменения питающих напряжений и продолжительности работы РЭА при этих напряжениях и т. п.

В плане испытаний указывают: необходимые работы, такие как изготовление образцов, их приемка ОТК, измерение и определение параметров, подготовка испытательного оборудования, проведение испытаний, оформление результатов, согласование и утверждение протокола испытаний и т. п.

Вторым организационно-методическим документом является методика испытаний РЭА, в нём излагаются: метод, средства и условия испытаний, алгоритмы выполнения операций по определению одной или нескольких взаимосвязанных характеристик свойств объекта, формы представления данных и методы оценивания точности, достоверности результатов, требования техники безопасности и охраны окружающей среды.

Основным требованием к методике является обеспечение максимальной эффективности процесса испытаний и минимально возможные погрешности полученных результатов. Она включает требования к методу и условиям испытаний и техническим средствам. Методика испытаний должна содержать описание следующих этапов процесса испытаний: проверку испытательного оборудования, подготовку испытываемых изделий, совместную проверку испытательного оборудования и испытуемого изделия, регистрацию результатов испытаний и данных об условиях их проведения.

Испытание на воздействие внешних факторов предназначено для определения с некоторой долей вероятности способности изделий сохранять работоспособность и параметры в заданных условиях окружающей среды путем имитации реальных условий окружающей среды или путем воспроизведения их воздействий. Когда возникает необходимость в проведении испытаний РЭА межнационального использования на воздействие внешних факторов, следует пользоваться методами испытаний, указанными в СТ МЭК 68-2, за исключением тех случаев, когда соответствующий метод испытаний отсутствует.

Для этого имеются следующие основания: а) полное соответствие с методами испытания СТ МЭК 68-2 необходимо для обеспечения повторяемости и воспроизводимости результатов; б) испытания СТ МЭК 68-2 подходят для применения к разнообразным образцам. Они разработаны независимо от вида испытуемого образца. Образец может не быть электротехническим изделием; в) результаты, полученные в различных лабораториях, могут быть сопоставимы; г) исключается распространение мало отличающихся друг от друга методов испытаний и оборудования; д) длительное использование одного и того же испытания позволяет сравнивать результаты предыдущих испытаний образцов, технические характеристики которых в условиях эксплуатации известны.

Испытания характеризуют посредством задания параметров испытательных режимов. Для некоторых испытаний необходимо описать испытательное оборудование. Выбирая метод испытания, который следует применять, разработчик нормативно-технологической документации должен учитывать экономические аспекты, в частности, когда существует два различных испытания, по результатам которых может быть получена одинаковая информация.

Если при раздельном воздействии двух или более внешних факторов не обеспечивается получение желаемой информации, следует воспользоваться комбинированными или составными испытаниями. Самые важные комбинированные и составные испытания даны в СТ МЭК В соответствии с Государственным стандартом механические и климатические испытания проводят с целью проверки соответствия изделий РЭА требованиям, установленным в ТЗ, стандартах и ТУ на изделия конкретных классов и типов. Испытаниям подвергается РЭА или отдельные ее части, число которых устанавливают в ТУ на изделия и в программе испытаний.

Все испытания проводят в нормальных климатических условиях (за исключением климатических), которые характеризуются следующими значениями параметров: - температура воздуха °С; - относительная влажность воздуха %; - атмосферное давление к Па ( мм рт. ст.). Испытания последовательно включают в себя начальную стабилизацию (если требуется); начальную проверку и измерения (если требуется); выдержку; конечную стабилизацию (если требуется); заключительные проверки и измерения (если требуется).

При механических испытаниях проводится определение прочности и устойчивости конструкции изделия при воздействии вибраций, ударов, линейных ускорений, акустического шума. При климатических испытаниях изделие подвергается воздействию повышенной и пониженной температур, термоциклирования, повышенной и пониженной влажности, давления, инея, росы, соляного тумана и т.п. При испытаниях на соответствие конструктивно- технологическим требованиям изделие подвергают воздействию агрессивных сред, испытанию на герметичность, на способность к пайке, на теплостойкость при пайке, на пожаробезопасность, взрывозащищенность и другие. Диапазон параметров воздействующих факторов, применяемых при испытаниях весьма широк, и зависит от класса аппаратуры и условий ее эксплуатации.