ГБОУ ВПО БГМУМинистерство здравоохранения и социального развития РФ Кафедра биологической химии Выполнили:Будникова М.П. Хакимова А.Ф. Преподаватель: доцент.

Презентация:



Advertisements
Похожие презентации
ЛЕКЦИЯ 6 Тема: «Молекулярный механизм сокращения мышц»
Advertisements

Обмен веществ и энергии организма с внешней средой Подготовила: Студентка 22 сб группы Ахтемова Мавиле.
Мышцы Мышечная ткань – одна из 4 типов тканей в организме и вместе с нервами, кровеносными сосудами и различными видами соединительной ткани образует.
Белки - сложные высокомолекулярные природные соединения, построенные из остатков α-аминокислот. Аминокислоты в белках связаны пептидными связями. Около.
Обмен веществ и превращение энергии в клетке. Обмен вещества(метаболизм) Совокупность протекающих в клетке химических превращений, обеспечивающих её рост,
Тема: Регуляция функций. Строение нервной системы Глава II. Нервно-гуморальная регуляция физиологических функций Задачи: Дать характеристику различным.
Физиология мышечного сокращения, Работа мышц, Сила мышечного сокращения, Утомление.
Белки. Свойства и функции.. Свойства белков 1. Белки являются амфотерными соединениями, сочетают в себе основные и кислотные свойства, определяемые радикалами.
Физиология обмена веществ и энергии. Физиологические основы рационального питания. Физиология терморегуляции. Energy.
Тема: Строение и химический состав клетки. Вы уже знаете, что тела растений и животных построены из клеток. Организм человека тоже состоит из клеток.
Метаболизм 2 Цели урока: 1.Формирование общих представлений о клеточном метаболизме и его биологическом значении. 2.Развитие навыков самостоятельной работы.
Содержание 1.Общая характеристика гипоксии 2.Классификация гипоксии 3.Типы гипоксии 4.Структурно – функциональные нарушения при гипоксии 5.Компенсаторно.
Модель скользящих нитей. Биомеханика мышцы. Уравнение Хилла. Моделирование мышечного сокращения. Электромеханическое сопротивление. Тема: Модель скользящих.
Минеральные соли и их биологическая роль.. Минеральные соли и кислоты находятся в клетках или в виде растворов, или в виде твердых отложений. При образовании.
Гормоны коркового вещества надпочечников - кортикостероиды Гормоны (от греч. hormao – побуждаю, возбуждаю) – это биологически активные вещества химической.
Автор: Датиева И.А. [ РАБОТА МЫШЦ ]. Основные вопросы 1)Мышечное волокно. Типология мышечных волокон 2)Онтогенез мышечных волокон: эмбриональный период,
Обмен кальция в организме человека Обмен кальция в организме человека Выполнила: Ковалевская Е.С Студентка ОЛД-218.
Роль воды в клетке Роль воды в клетке организма человека изучали многие ученые в различных направлениях науки: и химики, и биологи, и физики, и иммунологи.
Тема: Липиды Задачи: Изучить строение, свойства и функции липидов в клетке. Глава I. Химический состав клетки.
Клетка, её строение, химический состав, жизненные свойства.
Транксрипт:

ГБОУ ВПО БГМУМинистерство здравоохранения и социального развития РФ Кафедра биологической химии Выполнили:Будникова М.П. Хакимова А.Ф. Преподаватель: доцент Абдуллина Г.М. УФА-2011

План: 1. Введение в биохимию 2. Типы мышц 3. Мышечное волокно 4. Типы мышечных волокон и их вовлечение в мышечную деятельность 5. Основные белки мышц 6. Синтез и мобилизация гликогена в мышцах 7. Биохимические маркеры утомления и восстановления после физической нагрузки 8. Показатели липидного обмена. 9. Биохимический контроль развития систем энергообеспечения организма при мышечной деятельности.

Предмет и задачи биохимии. Место биохимии среди других биологических дисциплин. Объекты биохимического исследования. Важнейшие характерные черты живой материи: обмен веществом, энергией и информацией с окружающей средой; способность к самовоспроизводству; специализация и интеграция функций отдельных частей живого организма; саморегуляция процессов; приспособляемость к изменению условий существования. Базисная роль физико-химических процессов на молекулярном уровне организации для существования живой материи. Разделы биологической химии: статическая биохимия, динамическая биохимия, функциональная биохимия. Общее понятие о видах биологических функций природных соединений. Исторический очерк возникновения и развития биохимии. Химия природных соединений и физиологическая химия. Принципы редукционизма, холизма и интегратизма в биохимических исследованиях. Вычленение из биохимии новых дисциплин: молекулярной биологии, биоорганической и бионеорганической химии, биотехнологии и генетической инженерии и др. Возникновение комплекса дисциплин физико-химической биологии. Биохимия и современная медицина. Молекулярная медицина. Методы, используемые в биологической химии. Аналитические методы. Особенности применения методов аналитической химии в биохимических исследованиях. Иммунохимия. Методы выделения и очистки биомолекул. Методы изучения физико- химических свойств биомолекул. Методы установления химического и пространственного строения биомолекул (структурная биохимия). Введение в биохимию

Типы мышц В организме человека существует три типа мышц: скелетные, сердечные (миокард) и гладкие. Различаются они морфологическими, биохимическими и функциональными особенностями, а также путями развития. При микроскопическом исследовании в скелетных и сердечной мышцах обнаруживается исчерченность, поэтому их называют поперечно- полосатыми мышцами. В гладких мышцах такая исчерченность отсутствует. Функционально сердечная мышца отличается от скелетных мышц и занимает промежуточное положение между гладкими и скелетными мышцами. Сердечная мышца сокращается ритмично с последовательно изменяющимися циклами сокращения (систола) и расслабления (диастола) независимо от воли человека, то есть непроизвольно. Ее сокращение регулируется гормонами. Сокращение гладких мышц инициируется нервными импульсами, некоторыми гормонами и не зависит от воли человека, так как их тонус не контролируется нашим сознанием. Гладкие мышцы включают мышцы внутренних органов, систем пищеварения, стенок кровеносных сосудов, а также кожи и матки, обеспечивая их сокращение и расслабление. Скелетные мышцы прикреплены в основном к костям, что и обусловило их название. Сокращение скелетных мышц инициируется нервными импульсами и подчиняется сознательному контролю, то есть осуществляется произвольно.

Типы мышц

Мышечное волокно Мышечное волокно является структурной единицей скелетных мышц, представляя собой большую многоядерную клетку, а точнее - бесклеточное образование – симпласт, так как в процессе развития мышечная клетка образуется путем слияния множества эмбриональных отдельных клеток – миобластов. Клетка окружена плазматической мембраной – сарколеммой, которая покрыта сетью коллагеновых волокон, придающих ей прочность и эластичность. Длина отдельных мышечных клеток может достигать 10 см и даже 50 см, а толщина до 0,1 мм. К мышечному волокну подходят окончания двигательных нервов, а также множество кровеносных сосудов. Двигательный нерв, или мотонейрон имеет разветвленные аксоны и может иннервировать несколько мышечных волокон, которые вместе представляют функциональную единицу мышцы, называемую нейромоторной или двигательной единицей. Такая единица работает как единое целое, то есть сокращаются все входящие в нее мышечные волокна. Отдельная мышца состоит из многих двигательных единиц, которые могут неодновременно подключаться к мышечному сокращению. Сила и скорость сокращения мышцы зависит от количества участвующих в сокращении двигательных единиц, а также от частоты нервных импульсов. Мышечные клетки не способны к делению, поэтому разрушенные мышечные волокна не могут восстановиться простым удвоением. В случае повреждения, что наблюдается при напряженной мышечной деятельности, самовозобновление мышечного волокна происходит из маленькой клетки – сателлита, которая находится в неактивном состоянии в тесном контакте со зрелыми мышечными волокнами. При нарушении структуры мышечного волокна она активируется и начинает пролиферировать, что приводит к образованию нового мышечного волокна. В мышце количество мышечных волокон может достигать нескольких тысяч. У разных людей в одних и тех же мышцах может быть разное количество волокон, что влияет на их силовые способности, процессы адаптации к мышечной работе. Чем больше в мышцах волокон, тем большая возможность проявления максимальной силы мышц.

Мышечное волокно

Типы мышечных волокон и их вовлечение в мышечную деятельность В скелетных мышцах различают несколько типов мышечных волокон, отличающихся сократительными и метаболическими свойствами. К основным типам волокон относятся медленносокращающиеся (МС), или красные и быстросокращающиеся (БС), или белые. Медленносокращающиеся и быстросокращающиеся волокна имеют разную скорость возбуждения, сокращения утомления. Так скорость сокращения МС-волокон составляет более 110 мс, а БС-волокон – 50 мс. Отдельные типы волокон отличаются также механизмами энергообразования. Медленносокращающиеся волокна, имеющие малую скорость сокращения, располагают большим количеством митохондрий, ферментов биологического окисления углеводов и жиров, белка миоглобина, который запасает кислород, а также большой сетью капилляров, обеспечивающих достаточное поступление кислорода в мышцы, и большими запасами гликогена. Все это свидетельствует о том, что в МС-волокнах преобладают аэробные механизмы энергообразования, которые обеспечивают выполнение длительной работы на выносливость. Мотонейрон, иннервирующий МС-волокна, имеет небольшое тело клетки и управляет относительно небольшим количеством волокон (10-180). Быстросокращающиеся мышечные волокна характеризуются большим количеством миофибрилл, высокой АТФ-азной активностью миозина и ферментов гликолиза, наличием значительных запасов гликогена. Они имеют слаборазвитую капиллярную сеть и небольшое количество кислородсвязывающего белка – миоглобина. В связи с этим ресинтез АТФ в таких типах волокон осуществляется за счет анаэробных механизмов энергообразования – креатинфосфатной рекции и гликолиза. Наличие указанных выше биохимических особенностей обеспечивает высокую скорость сокращения и быстрое утомление этого типа мышечных волокон. БС-волокна приспособлены к скоростной интенсивной работе относительно небольшой продолжительности. Их мотонейроны имеют большое тело и сильно разветвленные аксоны, поэтому они нервируют от 300 до 800 мышечных волокон. Последовательность включения (рекруитирования) мышечных волокон в работу регулируется нервной системой и зависит от интенсивности нагрузок. При физической работе небольшой интенсивности – около 20-25% уровня максимальной силы мышечных сокращений – в работу вовлекаются в основном МС-волокна. При более интенсивной работе – 25-40% уровня максимальной силы – включаются БС-волокна типа «а». Если интенсивность работы превышает 40% максимальной, вовлекаются БС-волокна типа «б». Однако даже при максимальной интенсивности в работу вовлекаются не все имеющиеся волокна : у нетренированных людей – не более 55-65% имеющихся мышечных волокон, у высокотренированных спорсменов силовых видов спорта в работу могут вовлекаться 80-90% двигательных единиц. Подключение мышечных волокон к работе зависит от силы стимуляции мотонейроном. Минимальная величина стимуляции, при которой волокно сокращается максимально, называется порогом возбуждения (раздражения). Минимальный порог возбуждения имеют МС-волокна; у БС-волокон порог возбуждения в 2 раза выше, чем у МС- волокон. Количество МС- и БС-волокон в мышцах человека в среднем составляет 55 и 45% соответственно. Существует тесная корреляция между содержание БС-волокон и скоростными способностями мышц. Количество отдельных типов волокон генетически закреплено, поэтому плохо поддается изменению при тренировке. Однако при специфической тренировке их объем значительно увеличивается. Экспериментальные данные последних лет свидетельствуют о возможности изменения количества типов волокон при длительных тренировках: превращение волокон БС типа «а» в БС типа «б» или в МС.

Структурные и биохимические изменения в мышцах при сокращении и расслаблении В расслабленой мышце актиновые нити входят в пространство между миозиновыми нитями по краям дисков А, но не контактируют с ними. Центры АТФ-азной активности, находящиеся на головках миозина, присоединяют к себе АТФ, но не расщепляют ее. Для активации АТФ-аза необходимо присутствие ионов кальция. В саркоплазме покоящейся мышцы концентрация свободных ионов кальция очень низкая, так как они находятся в связанном состоянии в пузырьках саркоплазматического ретикулума. АТФ не позволяет контактировать миозиновым нитям с актиновыми. В этом случае АТФ действует как пластифицирующий агент, препятствующий образованию поперечных спаек между актином и миозином. Кроме того, в отсутствие ионов кальция молекулы тропина, расположенные в «овражке» между двумя скрученными полипептидными цепями актина в составе тонких нитей, также блокируют активные центры взаимодействия актина с миозином. Такой двойной ингибирующий эффект препятствует образованию поперечных спаек между толстыми и тонкими нитями в миофибриллах, предохраняет покоящуюся мышцу от бесполезных затрат АТФ и обуславливает упругость (эластичность) в этом состоянии. Сокращение мышцы запускается нервным импульсом. При этом в синапсе – места контакта нервного окончания с сарколеммой выделяется нейропередатчик ацетилхолин. Ацетилхолин вызывает возбуждение сарколеммы, сопровождающееся деполяризацией мембраны и образованием на ее поверхности потенциала действия. Потенциал действия распространяется в глубь волокна через Т-системы, которые контактируют с мембранами саркоплазматического ретикулума. Возбуждение достигает мембранных образований саркоплазматического ретикулума и способствует выходу ионов кальция из пузырьков ретикулума в саркоплазму. Повышение концентрации свободных ионов кальция в области миозиновых нитей активирует АТФ-азные центры в головках миозина. Происходит расщепление АТФ, но продукты этой реакции – АТФ и Фн – остаются на молекуле миозина. В таком состоянии миозиновые головки уже способны взаимодействовать с актином, однако центр их взаимодействия блокирован тропином. В снятии блока и освобождении актиновых центров на поверхности актиновых нитей также участвуют ионы кальция, которые связываются с тропином и снимают блок. Между головками миозина и активными центрами актина образуются поперечные спайки в виде актомиозинового комплекса. Образование актомиозиновых комплексов стимулирует отщепление АДФ и Фн от головок миозиновых молекул, а выделяющаяся при этом энергия используется для конформационных изменений сократительных белков. Головки миозиновых молекул изгибаются, принимая стреловидное положеие по отношению к оси миозиновой нити, при этом между толстыми и тонкими нитями развивается напряжение, сдвигающее тонкую нить по направлению к центру саркомера. Каждая спайка между актиновыми и миозиновыми нитями в процессе сокращения действует независимо от образования других спаек. Общий процесс сокращения, проявляющийся в укорочении мышечного волокна и развитии напряжения, является результатом суммирования одновременного образования большого числа спаек по всей длине миофибрилл, вовлеченных в процесс сокращения возбужденной мышцы. Величина напряжения в сокращающейся мышце будет пропорциональна количеству поперечных спаек или площади их наложения в пределах каждого саркомера, что диктуется нервной системой. При значительном растяжении мышцы (длина саркомера более 3,65 мкм) тонкие нити полностью выходят за пределы дисков А и напряжение в мышце отсутствует. По мере вхождения тонких нитей между толстыми и увеличения площади их наложения друг на друга напряжение в мышце постепенно увеличивается, достигая максимума при длине саркомера от 2,26 до 2,00 мкм. При более значительном сокращении мышцы тонкие нити перекрываются в центре дисков А и сжимаются в зоне Н, образуя полосу сокращения. Напряжение мышцы в этой стадии сокращения быстро снижается.

Структурная организация мышечных волокон Морфологическое строение мышечной клетки во многом подобно строению клеток других тканей. Однако в связи с выполнением специфической сократительной функции она имеет некоторые особенности. Мышечная клетка окружена электровозбудимой поверхностной мембраной – сарколеммой. На сарколемме находятся места контакта с окончаниями двигательных нервов – синапсы. Сарколемма обладает избирательной проницаемостью для различных веществ и имеет транспортные системы, с помощью которых поддерживается разная концентрация ионов натрия и калия, а также хлора внутри клетки и в межклеточной жидкости, что приводит к возникновению на ее поверхности мембранного потенциала. Образование мембранного потенциала под влиянием нервного импульса – необходимое условие возникновения возбуждения мышечного волокна. Внутреннее пространство мышечного волокна заполнено внутриклеточной жидкостью – саркоплазмой. Около 80% объема волокна занимают длинные сократительные нити – миофибриллы.

Миофибриллы Миофибриллы – это сократительные элементы мышечного волокна, количество которых может достигать нескольких тысяч. Под микроскопом миофибриллы имеют поперечную исчерченность в виде повторяющихся темных и светлых участков или дисков. Темные участки, или А-диски в центре имеют более светлую Н-зону, посередине которой проходит темная М-линия. Светлые участки, или I- диски в центре пересекаются узкой Z-линией (Z-мембраной). Участок миофибриллы между двумя Z-мембранами называется саркомером. Это наименьшая сократительная единица мышцы. Саркомеры следуют друг за другом вдоль миофибриллы. Повторяясь через каждые нм. В миофибрилле может находиться несколько сотен саркомеров. От их длины и количества в миофибрилле зависят скорость и сила сокращения мышцы. Исчерченность мышцы, видимая под световым микроскопом, - результат высокой их организации, когда большинство мышечных клеток выстраивается таким образом, что их саркомеры располагаются параллельно друг другу. Исследования поперечных срезов миофибрилл под электронным микроскопом показали, что каждая миофибрилла состоит из многочисленных параллельных толстых и тонких мышечных нитей, или филаментов, которые придают мышцам продольную исчерченность. Толстые нити находятся в А-дисках и состоят из белка миозина. Тонкие нити находятся в I-дисках и содержат белки актин, тропомиозин и тропонин. Располагаются тонкие нити вокруг толстого (миозинового) филамента по углам шестигранника таким образом, что каждая тонкая нить занимает симметричное положение между тремя толстыми нитями. А каждая толстая нить симметрично окружена шестью тонкими нитями. Толстые и тонкие нити миофибрилл взаимодействуют между собой посредством поперечных мостиков, расположенных вдоль толстой миозиновой нити. При сокращении мышцы длина толстых и тонких нитей не изменяется, а укорачивается расстояние между Z-мембранами в саркомерах. Следовательно, изменение длины мышцы является результатом скольжения толстых и тонких нитей относительно друг друга, сопровождающегося изменением степени взаимного перекрытия толстых и тонких нитей. Напряжение, развивающееся при сокращении мышцы, пропорционально степени перекрывания толстых и тонких нитей, а также числу образованных поперечных мостиков. Саркомеры при максимальном сокращении мышцы укорачиваются на 20-50%, при пассивном растягивании могут удлиняться до 120% нормальной длины. Для мышечного волокна характерно наличие сети поперечных трубчатых выпячиваний сарколеммы – Т-систем, которые проходят между миофибриллами и саркоплазматическим ретикулумом и обеспечивают быструю передачу нервных импульсов в глубь волокна к сократительным элементам мышцы.

Миофибриллы

Саркоплазматический ретикулум Саркоплазматический ретикулум (СР) – это внутриклеточная мембранная система взаимосвязанных уплощенных пузырьков и канальцев (цистерн), которая окружает саркомеры (миофибрилл) На внутренней мембране расположены белки, способные связывать ионы кальция. Основная функция СР заключается в регуляции содержания ионов кальция в пространстве между актином и миозином. Под воздействием нервного импульса СР выбрасывает катионы кальция, а после прекращения его воздействия снова поглощает ионы кальция. На мембране СР расположены также рибосомы, на которых происходит биосинтез белков. Одним из важнейших органоидов мышечного волокна являются митохондрии. Они располагаются вдоль миофибрилл, тесно соприкасаясь с ретикулумом. Митохондрии выполняют функции «энергетических станций» мышечного волокна, так как в них образуется АТФ – энергия мышечного сокращения. Количество митохондрий в тренированных мшцах по сравнению с нетренированными увеличивается.

Саркоплазматический ретикулум

Химический состав мышечной ткани В мышечной ткани человека содержится 72-80% воды и 20-28% сухого остатка от массы мышцы. Вода входит в состав большинства клеточных структур и служит растворителем для многих веществ. Большую часть сухого остатка образуют белки и другие органические соединения. Основные белки мышц Среди белков мышечной ткани выделяют три основные группы: саркоплазматические белки, на долю которых приходится около 35%, миофибриллярные белки, составляющие около 45%, и белки стромы, количество которых достигает 20%

Миофибриллярные белки Миофибриллярные белки включают сократительные белки миозин, актин и актомиозин, а также регуляторные белки тропомиозин, тропонин и альфа- и бета-актины. Миофибриллярные белки обеспечивают сократительную функцию мышц. Миозин является одним из основных сократительных белков мышц, составляющий около 55% от общего количества мышечных белков. Из него состоят толстые нити (филаменты) миофибрилл. Молекулярная масса этого белка – около В молекуле миозина различают длинную фибриллярную часть и глобулярные структуры (головки). Фибриллярная часть молекулы миозина имеет двуспиральную структуру. В составе молекулы выделяют шесть субъединиц: две тяжелые полипептидные цепи (молекулярная масса ) и четыре легкие цепи (молекулярная масса ), расположенные в глобулярной части. Основной функцией фибриллярной части молекулы миозина является способность образовывать хорошо упорядоченные пучки миозиновых филаментов или толстые протофибриллы. На головках молекулы миозина расположены активный центр АТФ-азы и актинсвязывающий центр, поэтому они обеспечивают гидролиз АТФ и взаимодействие с актиновыми филаментами. Актин – второй сократительный белок мышц, который составляет основу тонких нитей. Известны две его формы – глобулярный G-актин и фибриллярный F-актин. Глобулярный актин – это шарообразный белок с молекулярной массой На его долю приходится около 25% общей массы мышечного белка. В присутствии катионов магния актин подвергается нековалентной полимеризации с образованием нерастворимого филамента в виде спирали, получившего название F-актин. Обе формы актина не обладают ферментативной активностью. Каждая молекула G-актина способна связывать один ион кальция, который играет важную роль в инициировании сокращения. Кроме того, молекула G-актина прочно связывает одну молекулу АТФ или АДФ. Связывание АТФ G-актином обычно сопровождается его полимеризацией с образованием F-актина и одновременным расщеплением АТФ до АДФ и фосфата. АДФ остается связанной с фибриллярным актином. Тропомиозин – это структурный белок актиновой нити, представляющий собой вытянутую в виде тяжа молекулу. Две его полипептидные цепи как бы обвивают актиновые нити. На концах каждой молекулы тропомиозина расположены белки тропониновой системы, наличие которой характерно для поперечно-полосатых мышц. Тропонин является регуляторным белком актиновой нити. Он состоит из трех субъединиц: ТнТ, Тнl и ТнС. Тропонин Т (ТнТ) обеспечивает связывание этих белков с тропомиозином. Тропонин I (Тнl) блокирует (ингибирует) взаимодействие актина с миозином. Тропонин С (ТнС) – это кальцийсвязывающий белок, структура и функции которого подобны широко распространенному в природе белку кальмодулину. Тропонин С, как и кальмодулин, связывает четыре иона кальция на молекулу белка и имеет молекулярную массу В присутствии кальция изменяется конформация тропонина С, что приводит к изменению положения Тн по отношению к актину, в результате чего открывается центр взаимодействия актина с миозином. Таким образом, тонкий филамент миофибриллы поперечно-полосатой мышцы состоит из F-актина, тропомиозина и трех тропониновых компонентов. Кроме этих белков, в мышечном сокращении участвует белок актин. Обнаруживается он в зоне Z-линии, к которой крепятся концы F-актиновых молекул тонких нитей миофибрилл.

Саркоплазматические белки Саркоплазматические белки растворимы в воде и слабых солевых растворах. Основную массу их составляют белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы окислительного фосфорилирования, а также многие гликолиза, азотистого и липидного обменов, находящиеся в саркоплазме. К этой группе относится также белок миоглобин, который связывает кислород с большим сродством, чем гемоглобин, и депонирует молекулярный кислород в мышцах. В последнее время открыта группа саркоплазматических белков парвальбуминов, которые способны связывать ионы кальция, однако их физиологическая роль остается

Белки мышечной стромы в скелетной мышце представлены в основном коллагеном и эластином, которые входят в состав сарколеммы и Z-линий миофибрилл. Эти белки обладают эластичностью, большой упругостью, что имеет существенное значение для процесса сокращения и расслабления мышцы.

Синтез и мобилизация гликогена в мышцах В абсорбтивном состоянии мышечные клетки активно потребляют глюкозу из крови и синтезируют гликоген. Этому способствуют алиментарная гиперглюкоземия и то, что инсулин стимулирует перемещение ГЛЮТ-4 из цитозоля в плазматическую мембрану. В мышцах нет рецепторов глюкагона, и распад гликогена стимулируется главным образом ионами Са 2+ и адреналином, сходно с тем, как это происходит в печени. Однако источником Са 2+в мышцах служит прежде всего его освобождение из саркоплазматического ретикулума при нейростимуляции, а не в результате действия адреналина. При кратковременных мышечных нагрузках основным поставщиком энергии служит глюкоза, которая частью поступает в мышцы из крови, частью образуется (в форме глюкозо-Тфосфата) из гликогена, запасенного в самих мышечных клетках. Отметим, что 100 г гликогена могут обеспечить бег примерно в течение 15 мин. При переходе от состояния покоя к интенсивной мышечной работе потребность скелетных мышц в энергии за короткое время (доли секунды) возрастает в десятки раз. Каскадный механизм обеспечивает быстрое включение реакций, поставляющих энергию. Процесс начинается вне организма с возникновения стрессовой ситуации, связанной с необходимостью напряженной работы, например в спортивных состязаниях, при бегстве от опасности и т. п. В ответ на сигнал центральной нервной системы из мозгового вещества надпочечников секретируется в кровь адреналин, который взаимодействует с рецепторами мембран мышечных клеток, и запускаются каскады реакций, рассмотренные выше: аденилатциклазный, инозитолфосфатный, связанный с кальмодулином. В этих каскадах есть ступени усиления сигнала. Например, в аденилатциклазном каскаде одна молекула адреналина активирует одну молекулу аденилатциклазы здесь усиления нет. Но одна молекула аденилатциклазы может синтезировать много молекул цАМФ происходит усиление сигнала. Таким же образом сигнал усиливается на всех ферментативных стадиях. Это значит, что каскадный механизм обеспечивает включение в процесс катаболизма больших количеств глюкозы за короткое время. Когда необходимость в мышечной работе отпадает, секреция адреналина прекращается. Уже выделившийся адреналин разрушается, в результате чего инакти-вируется аденилатциклаза. Имеющийся в клетке цАМФ разрушается фосфодиэс-теразой, а следовательно, инактивируются протеинкиназы; гликогенфосфорилаза и гликогенсинтетаза дефосфорилируются фосфатазами, и система приходит в состояние, когда мобилизация гликогена подавлена, но возможен его синтез.

В настоящее время появляется потребность оценки степени физической нагрузки или уровня жизнеспособности организма и его элементов, что является одной из ключевых задач профилактики травм и оценки степени тренированности футболистов. Такая оценка позволяет объективно зарегистрировать темп изнашиваемости организма и его изменения при лечебно-профилактических воздействиях. Существуют различные подходы к получению данной оценки, например можно измерять степень отклонения различных структурно-функциональных характеристик организма от нормы и таким образом оценивать степень их утомления и восстановления или износа. Однако, для разных органов и систем организма типичным является разновременное начало, разная степень выраженности и разнонаправленность этих изменений (обычно как результат развития компенсаторных процессов). Зачастую выявляется выраженное индивидуальное и видовое различие этих изменений. При выборе показателей для оценки интенсивности физической нагрузки (ФН) и утомляемости из огромного множества возможных биомаркеров следует учитывать ряд требований, выполнение которых существенно повышает информативность и качество оценки: 1. Показатель обязательно должен значительно изменяться (желательно в несколько раз) в промежутке времени от начала тренировки до периода восстановления (отдыха). 2. Показатель должен быть высоко коррелированным со степенью ФН и тренированностью спортсмена. 3. Межиндивидуальная дисперсия показателя не должна превышать величины изменения его среднего значения. 4. Должна иметь место низкая чувствительность выбранного показателя к болезням (болезни не должны имитировать изменение показателя). 5. Обязательно должно наблюдаться изменение показателя для всех членов популяции. 6. Показатель должен быть индикатором достаточно значимого процесса возрастной физиологии и должен иметь смысловую, морфологическую и функциональную интерпретацию, отражать степень физической тренированности организма или изношенности какой - либо системы. Кроме этого, при определении биохимического маркера ФН желательно: · учитывать показатели возраста; · предусмотреть оценку степени тренированности по системам и органам; · учитывать апробированные в мировой практике тесты и формулы; · использовать современные средства информатики. Биохимические маркеры утомления и восстановления после физической нагрузки

К настоящему времени, к сожалению, не имеется сравнительного анализа наборов биохимических показателей по каким-либо критериям качества. Пока что не удается однозначно ответить на вопрос, какое же число показателей оптимально для определения степени ФН и утомляемости. Ясно, однако, что увеличение числа показателей более мало что дает в отношении точности определения ФН. Небольшое число показателей (3-4) не позволяет дифференцировать типы и профиль ответа организма на ФН. В различных странах было сделано немало попыток использовать изменение биохимических параметров в качестве маркеров физиологической утомляемости, но все они были неизменно сопряжены с рядом трудностей, связанных с отсутствия четких нормативов. Поскольку различные системы и органы неравномерно реагируют на ФН, основное значение приобретает выбор наиболее информативного, «ведущего» для данного вида тренировки критерия. Очень важна его скоррелированность с другими параметрами биохимического статуса и одинаковость (тождество) состояния признака по завершению процессов утомляемости. До конца нерешенным остается вопрос о том, какие же показатели максимально пригодны для определения утомляемости у футболистов ввиду их значительной физиологической и индивидуальной вариации. Для ответа на этот вопрос полезно учитывать отношение изменения показателя в течение тренировочного процесса к межиндивидуальному разбросу.

3.2. Лабораторные исследования: Клинический анализ крови; Клинический анализ мочи; Клинико - биохимический анализ крови из вены для: - Определения регуляторов энергетического метаболизма: кортизола, тестостерона, инсулина; -Оценки тиреоидного статуса: Т3 общий, Т4 общий, ТТГ(тиреотропин); - Оценки уровня ферментов: АЛТ (аланинаминотрансфераза), ACT (аспартатаминотрансфераза), Щелочная фосфотаза, КФК (креатинфосфокиназа). - Оценки биохимических показателей: глюкозы, холестерина, триглицеридов, фосфора. Все перечисленные показатели практически в произвольных сочетаниях используются теми ли иными школами по определению степени утомляемости. Оптимальным, видимо, является набор из наиболее отличающихся тестов, охватывающих различные системы и органы и отражающий: · возрастную физиологию, · пределы адаптации и функциональные резервы, · физическую и нервно-психическую работоспособность, · характеристики наиболее важных систем. В практике спорта обычно используется определение активности и содержания; энергетических субстратов (АТФ, КрФ, глюкоза, свободные жирные кислоты); ферментов энергетического обмена (АТФ-аза, КрФ-киназа, цитохромоксидаза, лактатдегидрогеназа и др.); промежуточных и конечных продуктов обмена углеводов, липидов и белков (молочная и пировиноградная кислоты, кетоновые тела, мочевина, креатинин, креатин, мочевая кислота, углекислый газ и др.); показателей кислотно-основного состояния крови (рН крови, парциальное давление СО 2, резервная щелочность или избыток буферных оснований и др.); регуляторов обмена веществ (ферменты, гормоны, витамины, активаторы, ингибиторы); минеральных веществ в биохимических жидкостях (бикарбонаты и соли фосфорной кислоты определяют для характеристики буферной емкости крови); белка и его фракций в плазме крови. В настоящем докладе мы ограничимся общим обзором предлагаемых показателей, систематизацией их по классам и возможностью использованием для оценки интенсивности воздействия ФН на различные системы организма. Как показывают исследования, по изменениям субстратов, происходящих в тренированном организме и находящих своё отражение, как в структуре мышц, так и в интегральной форме - в крови, являются отражением окислительных процессов в мышцах. Изучая скорость мобилизации и утилизации энергетических субстратов, при том или ином виде нагрузки в динамике тренировочного процесса, можно составить представления о том, в какой фазе находится формирование основного качества, определяющего выносливость, скоростно-силовые качества, окислительные способности работающих мышц.

Показатели углеводного обмена. Глюкоза. Изменение ее содержания в крови при мышечной деятельности индивидуально и зависит от уровня тренированности организма, мощности и продолжительности физических упражнений. Кратковременные физические нагрузки субмаксимальной интенсивности могут вызывать повышение содержания глюкозы в крови за счет усиленной мобилизации гликогена печени. Длительные физические нагрузки приводят к снижению содержания глюкозы в крови. У нетренированных лиц это снижение более выражено, чем у тренированных. Повышенное содержание глюкозы в крови свидетельствует об интенсивном распаде гликогена печени либо относительно малом использовании глюкозы тканями, а пониженное ее содержание - об исчерпании запасов гликогена печени либо интенсивном использовании глюкозы тканями организма. По изменению содержания глюкозы в крови судят о скорости аэробного окисления ее в тканях организма при мышечной деятельности и интенсивности мобилизации гликогена печени. Этот показатель обмена углеводов редко используется самостоятельно в спортивной диагностике, так как уровень глюкозы в крови зависит не только от воздействия физических нагрузок на организм, но и от эмоционального состояния человека, гуморальных механизмов регуляции, питания и других факторов. Появление глюкозы в моче при физических нагрузках свидетельствует об интенсивной мобилизации гликогена печени. Постоянное наличие глюкозы в моче является диагностическим тестом заболевания сахарным диабетом. Органические кислоты. Этот анализ позволяет обнаруживать метаболические нарушения, связываемые с генерализованной болью и утомляемостью, причинами возникновения которых считают реакцию на токсическую нагрузку, дисбаланс питательных веществ, пищеварительную дисфункцию и другие факторы. Этот анализ позволяет получить важную клиническую информацию о: органических кислотах, которые точно отражают углеводный метаболизм, функцию митохондрий и бета-окисление жирных кислот; дисфункции митохондрий, которая может лежать в основе хронических симптомов фибромиалгии, утомляемости, недомоганий, гипотонии (ослабления мышечного тонуса), нарушения кислотно-основного баланса, низкой переносимости физических нагрузок, боли в мышцах и суставах, а также головной боли. Нормальное здоровье и самочувствие зависят от здорового функционирования клеток. В каждой клетке имеется митохондрия, работающая как «электростанция». Основная функция митохондрии - эффективно производить требуемую для жизни энергию. Профиль клеточной энергии измеряет специально подобранные группы органических кислот. Эти метаболиты в основном отражают углеводный метаболизм, функционирование митохондрий и окисление жирных кислот, которое происходит в процессе дыхания клетки. Измеряемые в ходе данного анализа органические кислоты являются основными компонентами и промежуточными элементами метаболических путей преобразования энергии, связанных с циклом Кребса и производством аденозинтрифосфата основного источника энергии клеток. Этот профиль может оказаться особенно полезным для пациентов с хроническим недомоганием, фибромиалгией, утомляемостью, гипотонией (ослаблением мышечного тонуса), нарушением кислотно-щелочного баланса, плохой переносимостью физических нагрузок, болями в мышцах или суставах, а также головной болью. Органические кислоты играют главенствующую роль в выработке энергии для мышечной ткани. Поэтому дефекты митохондрий связаны с множеством нервно- мышечных нарушений. Накопление лактата, естественного для анаэробного гликолиза вещества, в плазме свидетельствует об истощении окислительного метаболического потенциала вследствие возрастания энергетических потребностей. Гликолитический механизм ресинтеза АТФ в скелетных мышцах заканчивается образованием молочной кислоты, которая затем поступает в кровь. Выход ее в кровь после прекращения физической нагрузки происходит постепенно, достигая максимума на 37-й минуте после окончания ФН. Содержание молочной кислоты в крови существенно возрастает при выполнении интенсивной физической работы. При этом накопление ее в крови совпадает с усиленным образованием в мышцах. Значительные концентрации молочной кислоты в крови после выполнения максимальной работы свидетельствуют о более высоком уровне тренированности при хорошем спортивном результате или о большей метаболической емкости гликолиза, большей устойчивости его ферментов к смещению рН в кислую сторону. Таким образом, изменение концентрации молочной кислоты в крови после выполнения определенной физической нагрузки связано с состоянием тренированности спортсмена. По изменению ее содержания в крови определяют анаэробные гликолитические возможности организма, что важно при отборе спортсменов, развитии их двигательных качеств, контроле тренировочных нагрузок и хода процессов восстановления организма.

Показатели липидного обмена. Свободные жирные кислоты. Являясь структурными компонентами липидов, уровень свободных жирных кислот в крови отражает скорость липолиза триглицеридов в печени и жировых депо. В норме содержание их в крови составляет 0,10,4 ммоль л" 1 и увеличивается при длительных физических нагрузках. По изменению содержания СЖК в крови контролируют степень подключения липидов к процессам энергообеспечения мышечной деятельности, а также экономичность энергетических систем или степень сопряжения между липидным и углеводным обменом. Высокая степень сопряжения этих механизмов энергообеспечения при выполнении аэробных нагрузок является показателем высокого уровня функциональной подготовки спортсмена. Кетоновые тела. Образуются они в печени из ацетил-КоА при усиленном окислении жирных кислот в тканях организма. Кетоновые тела из печени поступают в кровь и доставляются к тканям, в которых большая часть используется как энергетический субстрат, а меньшая выводится из организма. Уровень кетоновых тел в крови отражает скорость окисления жиров. При накоплении в крови (кетонемия) они могут появиться в моче, тогда как в норме в моче кетоновые тела не выявляются. Появление их в моче (кетонурия) у здоровых людей наблюдается при голодании, исключении углеводов из рациона питания, а также при выполнении физических нагрузок большой мощности или длительности. По увеличению содержания кетоновых тел в крови и появлению их в моче определяют переход энергообразования с углеводных источников на липидные при мышечной активности. Более раннее подключение липидных источников указывает на экономичность аэробных механизмов энергообеспечения мышечной деятельности, что взаимосвязано с ростом тренированности организма. Холестерин. Это представитель стероидных липидов, не участвующий в процессах энергообразования в организме. Однако, систематические физические нагрузки могут привести к его снижению в крови. Можно выделить три типа изменения (повышение, снижение и не изменяющееся) содержание общего холестерина после мышечного усилия. Характер изменений холестерина зависит от его исходного уровня: при более высоком содержании общего холестерина отмечается его снижение в ответ на нагрузку, при относительно низком, наоборот, происходит его увеличение. У спортсменов имеет место увеличение содержания холестерина как в покое, так и после физической нагрузки. Фосфолипиды. Содержание фосфолипидов отражает выраженность нарушений липидного обмена связанного с дистрофией печени. Повышение их уровня в крови наблюдается при диабете, заболеваниях почек, гипофункции щитовидной железы и других нарушениях обмена, понижение - при жировой дистрофии печени. Поскольку длительные физические нагрузки сопровождаются жировой дистрофией печени, в спортивной практике иногда используют контроль содержания триглицеридов и фосфолипидов в крови. оказатели липидного обмена. Свободные жирные кислоты. Являясь структурными компонентами липидов, уровень свободных жирных кислот в крови отражает скорость липолиза триглицеридов в печени и жировых депо. В норме содержание их в крови составляет 0,10,4 ммоль л" 1 и увеличивается при длительных физических нагрузках. По изменению содержания СЖК в крови контролируют степень подключения липидов к процессам энергообеспечения мышечной деятельности, а также экономичность энергетических систем или степень сопряжения между липидным и углеводным обменом. Высокая степень сопряжения этих механизмов энергообеспечения при выполнении аэробных нагрузок является показателем высокого уровня функциональной подготовки спортсмена. Кетоновые тела. Образуются они в печени из ацетил-КоА при усиленном окислении жирных кислот в тканях организма. Кетоновые тела из печени поступают в кровь и доставляются к тканям, в которых большая часть используется как энергетический субстрат, а меньшая выводится из организма. Уровень кетоновых тел в крови отражает скорость окисления жиров. При накоплении в крови (кетонемия) они могут появиться в моче, тогда как в норме в моче кетоновые тела не выявляются. Появление их в моче (кетонурия) у здоровых людей наблюдается при голодании, исключении углеводов из рациона питания, а также при выполнении физических нагрузок большой мощности или длительности. По увеличению содержания кетоновых тел в крови и появлению их в моче определяют переход энергообразования с углеводных источников на липидные при мышечной активности. Более раннее подключение липидных источников указывает на экономичность аэробных механизмов энергообеспечения мышечной деятельности, что взаимосвязано с ростом тренированности организма. Холестерин. Это представитель стероидных липидов, не участвующий в процессах энергообразования в организме. Однако, систематические физические нагрузки могут привести к его снижению в крови. Можно выделить три типа изменения (повышение, снижение и не изменяющееся) содержание общего холестерина после мышечного усилия. Характер изменений холестерина зависит от его исходного уровня: при более высоком содержании общего холестерина отмечается его снижение в ответ на нагрузку, при относительно низком, наоборот, происходит его увеличение. У спортсменов имеет место увеличение содержания холестерина как в покое, так и после физической нагрузки. Фосфолипиды. Содержание фосфолипидов отражает выраженность нарушений липидного обмена связанного с дистрофией печени. Повышение их уровня в крови наблюдается при диабете, заболеваниях почек, гипофункции щитовидной железы и других нарушениях обмена, понижение - при жировой дистрофии печени. Поскольку длительные физические нагрузки сопровождаются жировой дистрофией печени, в спортивной практике иногда используют контроль содержания триглицеридов и фосфолипидов в крови.

Продукты перекисного окисления липидов (ПОЛ ). При интенсивных физических нагрузках усиливаются процессы перекисного окисления липидов и в крови накапливаются продукты этих процессов, что является одним из факторов, лимитирующих физическую работоспособность. Две составляющие этого механизма: уровень перекисных процессов в скелетной мышце и вовлечение лейкоцитов в процесс повреждения. ФН вызывает усиление перекисных процессов в скелетных мышцах при снижении активности основного фермента антиоксидантной защиты – супероксиддисмутазы, что приводит к повреждению целостности мембран миоцитов. Результатом повреждения клеточной мембраны является изменение ее проницаемости и выход в кровь как цитоплазматических (миоглобин, аспартатаминотрансфераза), так и структурных (тропомиозин) белков скелетной мышцы. Повреждение ткани при гипоксии и вследствие развития процесса перекисного окисления при восстановлении кровотока (реперфузия) стимулирует привлечение в очаг повреждения лейкоцитов которые в следствие активации выделяют большое количество активных форм кислорода (ОМГ-тест) тем самым разрушая здоровые ткани. Через одни сутки после интенсивной физической нагрузки активность гранулоцитов крови выше контрольного значения примерно в 7 раз и на этом уровне сохраняется в течение последующих 3 суток, затем начинает снижаться, превышая, однако, контрольный уровень и через 7 суток восстановления. Биохимический контроль реакции организма на физическую нагрузку, оценка специальной подготовленности спортсмена, выявления глубины биодеструктивных процессов при развитии стресс-синдрома должены включать определение содержания продуктов перекисного окисления в крови: малонового диальдегида, диеновых конъюгатов, а также активность ферментов глутатионпероксидазы, глутатионредуктазы и каталазы, супероксиддисмутазы. Перекисное повреждение белковых веществ приводит к их деградации и образованию токсических фрагментов, в том числе, молекул средней массы (МСМ), которые принято считать маркерами эндогенной интоксикации в том числе у спортсменов после интенсивной ФН.

Показатели белкового обмена Гемоглобин. Основным белком эритроцитов крови является гемоглобин, который выполняет кислородтранспортную функцию. Он содержит железо, связывающее кислород воздуха. При мышечной деятельности резко повышается потребность организма в кислороде, что удовлетворяется более полным извлечением его из крови, увеличением скорости кровотока, а также постепенным увеличением количества гемоглобина в крови за счет изменения общей массы крови. С ростом уровня тренированности спортсменов в видах спорта на выносливость концентрация гемоглобина в крови возрастает. Увеличение содержания гемоглобина в крови отражает адаптацию организма к физическим нагрузкам в гипоксических условиях. Однако при интенсивных тренировках, происходит разрушение эритроцитов крови и снижение концентрации гемоглобина, что рассматривается как железодефицитная «спортивная анемия». В таком случае следует изменить программу тренировок, а в рационе питания увеличить содержание белковой пищи, железа и витаминов группы В.

По содержанию гемоглобина в крови можно судить об аэробных возможностях организма, эффективности аэробных тренировочных занятий, состоянии здоровья спортсмена. Гематокрит - это доля (%) от общего объема крови, которую составляют эритроциты. Гематокрит отражает соотношение эритроцитов и плазмы крови и при адаптации к физической нагрузке имеет исключительно важное значение. Определение его позволяет оценить состояние кровообращения в микроциркуляторном русле и определить факторы, затрудняющие доставку кислорода в ткани. Гематокрит при ФН возрастает в результате чего увеличивается способность крови транспортировать кислород к тканям. Однако это имеет и отрицательную сторону - приводит к повышению вязкости крови, что затрудняет кровоток и ускоряет время свертывания крови. Повышение уровня гемоглобина в крови обусловлено уменьшением плазмы крови в результате трансфузии жидкости из кровяного русла в ткани и выходом эритроцитов из депо.

Ферритин. Самый информативный индикатор запасов железа в организме, основная форма депонированного железа. В физиологических условиях метаболизма железа ферритин играет важную роль в поддержании железа в растворимой, нетоксичной и биологически полезной форме. Во время физической нагрузки снижение уровня ферритина свидетельствует о мобилизации железа для синтеза гемоглобина, выраженное снижение – о наличии скрытой железодифицитной анемии. Повышенный уровень сывороточного ферритина отражает не только количество железа в организме, но и является проявлением острофазного ответа на воспалительный процесс. Тем не менее, если у пациента действительно имеется дефицит железа, острофазное повышение его уровня не бывает значительным.

Трансферин. Плазменный белок, гликопротеин - основной переносчик железа. Синтез трансферрина осуществляется в печени и зависит от функционального состояния печени, от потребности в железе и резервов железа в организме. Трансферрин участвует в транспорте железа от места его всасывания (тонкая кишка) до места его использования или хранения (костный мозг, печень, селезенка). При снижении концентрации железа синтез трансферррина возрастает. Снижение процента насыщения трансферрина железом (следствие снижения концентрации железа и роста концентрации трансферрина) указывает на анемию, обусловленную недостатком поступления железа. Длительная интенсивная ФН может привести к увеличению содержания этого транспортного белка в крови. У нетренированных спортсменов ФН может вызвать снижение его уровня.

Миоглобин. В саркоплазме скелетных и сердечной мышц находится высокоспециализированный белок, выполняющий функцию транспорта кислорода подобно гемоглобину. Под влиянием физических нагрузок, при патологических состояниях организма он может выходить из мышц в кровь, что приводит к повышению его содержания в крови и появлению в моче (миоглобинурия). Количество миоглобина в крови зависит от объема выполненной физической нагрузки, а также от степени тренированности спортсмена. Поэтому данный показатель может быть использован для диагностики функционального состояния работающих скелетных мышц. Актин. Содержание актина в скелетных мышцах в качестве структурного и сократительного белка существенно увеличивается в процессе тренировки. По его содержанию в мышцах можно было бы контролировать развитие скоростно-силовых качеств спортсмена при тренировке, однако определение его содержания в мышцах связано с большими методическими затруднениями. Тем не менее, после выполненных физических нагрузок отмечается появление актина в крови, что свидетельствует о разрушении либо обновлении миофибриллярных структур скелетных мышц.

Биохимический контроль развития систем энергообеспечения организма при мышечной деятельности. Спортивный результат в определенной степени лимитируется уровнем развития механизмов энергообеспечения организма. Поэтому в практике спорта проводится контроль мощности, емкости и эффективности анаэробных и аэробных механизмов энергообразования в процессе тренировки. Для оценки мощности и емкости креатинфосфокиназного механизма энергообразования можно использовать показатели количества креатинфосфата и активности креатинфосфокиназы в крови. В тренированном организме эти показатели значительно выше, что свидетельствует о повышении возможностей креатинфосфокиназного (алактатного) механизма энергообразования. Степень подклю-чения креатинфосфокиназного механизма при выполнении физических нагрузок можно оценить по увеличению в крови содержания продуктов обмена КрФ в мышцах (креатина, креатинина и неорганического фосфата) и изменению их содержания в моче Для характеристики гликолитического механизма энергообразования часто используют величину максимального накопления лактата в артериальной крови при максимальных физических нагрузках, а также значение рН крови и показатели КОС, содержание глюкозы в крови, активность ферментов лактатдегидрогеназы, фосфорилазы. О повышении возможностей гликолитического (лактатного) энергообразования у спортсменов свидетельствует более поздний выход на максимальное количество лактата в крови при предельных физических нагрузках, а также более высокий его уровень. Увеличение емкости гликолиза сопровождается увеличением запасов гликогена в скелетных мышцах, особенно в быстрых волокнах, а также повышением активности гликолитических ферментов. Для оценки мощности аэробного механизма энергообразования чаще всего используются уровень максимального потребления кислорода (МПК или ИЭ 2 тах) и показатель кислородтранспортной системы крови – концентрация гемоглобина. Эффективность аэробного механизма энергообразования зависит от скорости утилизации кислорода митохондриями, что связано прежде всего с активностью и количеством ферментов окислительного фосфорилирования, количеством митохондрий, а также от доли жиров при энергообразовании. Под влиянием интенсивной тренировки аэробной направленности увеличивается эффективность аэробного механизма за счет увеличения скорости окисления жиров и увеличения их роли в энергообеспечении работы. При однократных и систематических ФН с аэробной направленностью метаболических процессов наблюдается усиление липидного метаболизма как жировой ткани, так и скелетных мышц. Повышение интенсивности аэробных ФН приводит к увеличению мобилизации внутримышечных триглицеридов и утилизации жирных кислот в работающих мышцах за счет активизации процессов их транспорта.

Маркеры утомления. Мышечная утомляемость - неспособность мышц поддерживать мышечное сокращение заданной интенсивности - связана с избытком аммиака, лактата, креатинфосфата, недостатком белка Коэффициент восстановления: - углеводного обмена (скорость утилизации молочной кислоты во время отдыха), - липидного обмена (нарастание содержания жирных кислот и кетоновых тел в крови, которые в период отдыха являются главным субстратом аэробного окисления), - белкового обмена (скорость нормализации мочевины при оценке переносимости спортсменом тренировочных и соревновательных физических нагрузок, хода тренировочных занятий и процессов восстановления организма). Если содержание мочевины на следующее утро остается выше нормы, то это свидетельствует о недовосстановлении организма либо развитии его утомления). Коэффициент микроциркуляции (КМ)=7,546Фг-0,039Tr -0,381АПТВ+0,234ФА+0,321РФМК-0,664ATIII+101,064 (должен равняться календарному возрасту) Определение содержания продуктов перекисного окисления в крови малонового диальдегида, диеновых конъюгатов. Биохимический контроль реакции организма на физическую нагрузку, оценка специальной подготов- ленности спортсмена, выявления глубины биодеструктивных процессов при развитии стресс-синдрома активность ферментов глутатионпероксидазы, глутатионредуктазы и каталазы, супероксиддисмутазы. Определение молекул средней массы (МСМ) (перекисное повреждение белковых веществ приводит к их деградации и образованию токсических фрагментов молекул средней массы, которые принято считать маркерами эндогенной интоксикации у спортсменов после интенсивной ФН. На ранних стадиях утомления уровень СМП возрастает по сравнению с нормой в среднем на %, на средней стадии - на %, поздних - на %. ) Коэффициент эндогенной интоксикации = СМП/ЭКА* 1000 (эффективная концентрация альбумина) ОМГ- тест (привлечение в очаг повреждения лейкоцитов которые в следствие активации выделяют большое количество активных форм кислорода тем самым разрушая здоровые ткани. Через одни сутки после интенсивной физической нагрузки активность гранулоцитов крови выше контрольного значения примерно в 7 раз и на этом уровне сохраняется в течение последующих 3 суток, затем начинает снижаться, превышая, однако, контрольный уровень и через 7 суток восстановления)

Маркеры повреждения мышечной ткани. Уровень саркоплазматических ферментов (КФК) и (ЛДГ) Миоглобин, тропонин, BNP Определение содержания продуктов перекисного окисления в крови малонового диальдегида, диеновых конъюгатов Активность ферментов глутатионпероксидазы, глутатионредуктазы и каталазы, супероксиддисмутазы Уровень активных форм кислорода (ОМГ- тест) БАМ (обнаружение креатина и 3-метил-гистидина) Маркеры восстановления организма после ФН. Восстановление организма связано с возобновлением количества израсходованных во время работы энергетических субстратов и других веществ. Уровень биохимических маркеров изучается на 1, 3, 7 день после интенсивной физической нагрузки. Уровень глюкозы. Уровень инсулина, кортизола. Скорость восстановления уровня молочной кислоты (лактата) Скорость восстановления уровня ферментов ЛДГ, КФК, Скорость восстановления уровня мочевины, Нарастание содержания свободных жирных кислот Снижение уровня малонового диальдегида, диеновых конъюгатов Общего белка и белковых фракций Восстановление до исходного уровня измененных показателй

КОНЕЦ