«Расчет и проектирование конструкций в среде SCAD Office 21» г. Москва, 23 апреля 2014 г. Приближенные методики расчета зданий с системой сейсмоизоляции.

Презентация:



Advertisements
Похожие презентации
Методики чисельного аналізу несучих систем будинків у сейсмічних районах Національна академія природоохоронного і курортного будівництва Лабораторія САПР.
Advertisements

« Особенности расчета и конструирования железобетонных конструкций » А.Н. Бамбура, А.Б. Гурковский, И.Р. Сазонова.
Проблемы устойчивости холодногнутых стержневых элементов конструкций Д.т.н., профессор, Заслуженный деятель науки России, Директор ЗАО «ЭРКОН» Белый Г.И.
1 ПРИМЕРЫ УЧЕТА НЕЛИНЕЙНЫХ СВОЙСТВ МАТЕРИАЛОВ В РАСЧЕТАХ КОНСТРУКЦИЙ А.Н.Бамбура, А.Б.Гурковский – НИИСК, г.Киев.
КОЛЕБАНИЯ И ВОЛНЫ Часть I 11 класс. Колебаниями называются процессы различной природы, которые точно или почти точно повторяются через определенные промежутки.
Стр. 1 Часть 2 – Динамический анализ явным методом MSC.Dytran Seminar Notes Введение в использование метода Лагранжа.
ПРИМЕРЫ НОВЫХ ВИДОВ РАСЧЕТОВ В ПРОГРАММНОМ КОМПЛЕКСЕ ЛИРА 10.0 Гераймович Юрий Дмитриевич, ООО «ЛИРА софт», к.т.н., руководитель проекта.
Методы оценки прочности Самым распространенным методом оценки прочности деталей машин является расчет по допускаемым напряжениям по условиям прочности.
Разработка трехмерной конечно-элементной динамической модели ВКУ ВВЗР-1000 для обоснования прочности при сейсмических нагрузках В.В.Абрамов Л.А.Лякишев.
Подсистема для моделирования механических процессов в радиоэлектронных средствах АСОНИКА-М.
Лекция 17 ДИНАМИКА СООРУЖЕНИЙ (продолжение). 7. Вынужденные колебания систем с одной степенью свободы Если в уравнении вынужденных колебаний системы с.
Методы расчёта диафрагм жёсткости по нелинейной деформационной модели с использованием ПК SCAD В.В. Ходыкин, к.т.н. И.А. Лапшинов ООО МСК «Мост К»
«Расчёт и проектирование сложных объектов» международный семинар расчётчиков в г. Москва Некоторые проблемы численного моделирования конструкций свайных.
«Активный фильтр высших гармоник с компенсацией реактивной мощности для городских сетей низкого и среднего напряжения» ООО «Центр экспериментальной отработки.
В.Г. Федоровский С.О. Шулятьев НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ, ПРОЕКТНО-ИЗЫСКАТЕЛЬСТКИЙ И КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ.
Особенности формирования расчетных моделей монолитных железобетонных высотных зданий КАБАНЦЕВ О.В., НПО «СКАД Софт», Главный научный сотрудник, к.т.н.
Расчеты на прочность бетонных сооружений ГЭС под воздействием сейсмических и вынужденных гармонических нагрузок Плешаков Никита Санкт-Петербург 2011 СПбГПУ.
Деформация растяжения z x y C F 4 E I II K I F 1 F 2 F 3 F 5 B D A Деформация, при которой в поперечном сечении бруса возникает один силовой факторпродольная.
Лекция 12 Емкостные преобразователи Емкостный преобразователь представляет собой конденсатор, электрические параметры которого изменяются под действием.
Расчет мачты на оттяжках в системе SCAD. Мачта на оттяжках является достаточно специфическим объектом расчета, который характеризуется следующими особенностями:
Транксрипт:

«Расчет и проектирование конструкций в среде SCAD Office 21» г. Москва, 23 апреля 2014 г. Приближенные методики расчета зданий с системой сейсмоизоляции на сейсмические воздействия. Бубис А.А., Юн А.Я., Петряшев С.О., Петряшев Н.О. ЦИСС ЦНИИСК им. В. А. Кучеренко.

Специалистами Центра Исследования Сейсмостойкого Строительства ЦНИИСК им. Кучеренко был предложен метод расчета зданий с резинометаллическими опорами на действие сейсмических нагрузок, с использованием модифицированных спектров ускорений. Для учета нелинейного характера работы системы сейсмоизоляции, при определении расчетных значений узловых сейсмических нагрузок используется специально полученный график спектра ускорений. Построение графика спектра ускорений осуществляется в программном «фильтре», написанном на языке Fortran, на основе анализа региональных особенностей, конструктивных решений и грунтовых условий непосредственно на площадке строительства. При расчете сейсмических нагрузок спектр ускорений задается в расчетный комплекс вместо графика коэффициентов динамичности.

Типы сейссмоопор W Проектная несущая способность при напряжении 15 МПа, кН d Проектные перемещени я, мм Qd Горизонтальн ая сила в точке начала пластических деформаций, кН Ku Начальная горизонтальн ая жесткость, кН/мм Kd Касательная горизонтальн ая жесткость в пластической стадии, кН/мм Keq Секущая жесткость при 100% проектном перемещени и, кН/мм GZY300V5A GZY350V5A GZY400V5A GZY500V5A GZY600V5A GZY700V5A GZY800V5A GZY900V5A GZY1000V5A Характеристики резинометаллических сейсмоопор.

Физико – механические характеристики опор Типы сейсмоопор Кu-период сейсмоопоры в упругой стадии, сек Кd- период сейсмоопоры в пластической стадии, сек d – перемещения в точке начала пластических деформаций, см CD- коэффициент демпфирования GZY300V5A (или 10%) GZY350V5A GZY400V5A GZY500V5A GZY600V5A GZY700V5A GZY800V5A GZY900V5A GZY1000V5A

Модификация динамического воздействия. Собственные периоды колебания системы. - круговая частота W – вес здания; Ku – начальная горизонтальная жесткость; Kd – горизонтальная жесткость в пластической стадии - затухание, CD – коэффициент затухания. -максимальное значение ускорений до начала пластических деформаций в опоре. - жесткость опоры - ускорение в уровне верха сейсмоопоры.

Диаграммы деформирования используемые в программе «фильтре».

Принципы моделирования. Одномассовая модель. Многомассовая модель. При расчете одномассовой модели жесткость системы описывается диаграммой работы РМО. В многомассовой системе – для надопорных конструкций принята упругая модель работы, а жесткость нижнего этажа также описывается диаграммой работы РМО. Жесткость надопорных конструкций была подобрана таким образом, чтобы периоды собственных колебаний двухмассовой и пятимассовой систем были равны.

Спектры ускорений исходных акселерограмм

Расчетный спектр ускорений

Ф резинометаллическая опора производства Китай, испытания проходили в Японии. А) Экспериментальная диаграмма б) Диаграмма, полученная расчетным путем Зависимость Нагрузка-Перемещение для резинометаллической опоры ф 1000 при напряжении 10 МПа при циклической нагрузке 50%-250% от проектной.

Исходные воздействия. Землетрясение, дата Направление Магнитуда, эпицентр Длитель- ность, сек Максимальное ускорение, см/с 2 Шаг записи, с Бухарест (Румыния) Buch Buch9025 км Газли (Узбекистан) Gazl Gazl9040 км 600 Эль Центро (США) Elcn Elcn9050 км Акита (Япония) Akit Akit90190 км 90 Нортридж (США) NOR_S00E NOR_S90W503.4 Япония IBR016 IBR EW IBR NS 338 км

Исходная акселерограмма (вверху) и модифицированные сигналы (внизу) для разных типоразмеров РМО. Одномассовая система. Землетрясение Бухарест OX. Спектр реакции исходной акселерограммы (слева) и спектры реакции модифицированных сигналов (справа) для разных типоразмеров РМО. Землетрясение Бухарест OX. Одномассовая система. Диаграммы зависимости «Ускорение- Перемещение» Одномассовая система. Землетрясение Бухарест OX.

Спектр реакции исходной акселерограммы (слева) и спектры реакции модифицированных сигналов (справа). Землетрясение в г.Газли OX. Диаграммы зависимости «Ускорение- Перемещение» в верхней части сейсмоопоры для разных типоразмеров РМО. Землетрясение в г.Газли OX. Исходная акселерограмма (вверху) и модифицированные сигналы (внизу) для разных типоразмеров РМО. Землетрясение в г.Газли OX.

Исходная акселерограмма (вверху) и модифицированные сигналы (внизу) для разных типоразмеров РМО. Одномассовая система. Землетрясение в Японии OX.

Спектр реакции исходной акселерограммы (слева) и спектры реакции модифицированных сигналов (справа) для разных типоразмеров РМО. Землетрясение в Японии OX. Одномассовая система. Диаграммы зависимости «Ускорение- Перемещение» для разных типоразмеров РМО. Одномассовая система. Землетрясение в Японии OX.

Исходная акселерограмма (вверху) и модифицированные сигналы (внизу) для разных типоразмеров РМО. Двухмассовая система. Землетрясение в г.Бухарест OX. Спектр реакции исходной акселерограммы (слева) и спектры реакции модифицированных сигналов (справа) для разных типоразмеров РМО. Землетрясение в г.Бухарест OX. Двухмассовая система Диаграммы зависимости «Ускорение- Перемещение» в верхней части сейсмоопоры для разных типоразмеров РМО. Землетрясение в г.Бухарест OX. Двухмассовая система

Исходная акселерограмма (вверху) и модифицированные сигналы (внизу) для разных типоразмеров РМО. Двухмассовая система. Землетрясение в г.Газли. Спектр реакции исходной акселерограммы (слева) и спектры реакции модифицированных сигналов (справа) для разных типоразмеров РМО. Землетрясение в г.Газли. Двухмассовая система Диаграммы зависимости «Ускорение- Перемещение» в верхней части сейсмоопоры для разных типоразмеров РМО. Двухмассовая система. Землетрясение в г.Газли.

Исходная акселерограмма (вверху) и модифицированные сигналы (внизу) для разных характеристик верхней части системы. Землетрясение в г.Эль-Центро OY. Спектр реакции исходной акселерограммы (слева) и спектры реакции модифицированных сигналов (справа) для разных характеристик верхней части системы. Землетрясение в г.Эль-Центро OY.

Исходная акселерограмма и модифицированные сигналы для разных типоразмеров РМО. Одно- и двухмассовая система. Землетрясение в г.Бухарест. Спектр реакции исходной акселерограммы и модифицированных сигналов для разных типоразмеров РМО. Одно- и двухмассовая система. Землетрясение в г.Бухарест.

Выводы и анализ результатов: При использовании РМО любого типоразмера происходит сглаживание сигнала, фильтруются высокочастотные колебания. Для низкочастотных землетрясениях при использование РМО с собственными частотами колебаний, близкими к частотам воздействия, происходит усиление сигнала. Наблюдается увеличение максимальных ускорений сигнала и максимального значения спектра реакции (максимальный пик реализуется на более низкой частоте – происходит сдвиг вправо). Это можно наблюдать для Бухаресткого землетрясения при использовании РМО небольших размеров (GZY300V5A). Пиковые значения спектра реакции для высокочастотного землетрясения уменьшаются в разы. Так, для землетрясения в г.Газли (направление OX) максимальное значение реакции уменьшилось в 4.43 раза (опора GZY300V5A), но если сравнивать значения на соответствующих периодах, то значения могут отличаться более, чем в 10 раз. Стоит отметить, что максимальные ускорения для данного землетрясения после модификации через «фильтр» уменьшились в 3,5 раза. Для РМО более высокой размерности изменения еще больше. С увеличением размера РМО снижаются пиковые ускорения, но, в большинстве случаев, увеличиваются максимальные перемещения верха сейсмоопоры. Данное явление хорошо прослеживается на диаграммах «ускорение-перемещение» (уменьшается относительная жесткость элемента). РМО больших размеров менее чувствительны к частотному составу исходного землетрясения, так для низкочастотного землетрясения в г. Бухарест или высокочастотного землетрясения в г.Газли происходит значительное уменьшение спектра реакции по сравнению с РМО малой размерности (для низкочастотных землетрясений может быть даже увеличение пика).

Верификация метода. Одномассовая модель.

Двухмассовая модель.

Пятимассовая модель.

Результаты расчета. Землетрясение в г. Газли

Землетрясение в г. Эл Центро

Землетрясение в г. Акита

1) В высокочастотной области (область частот выше Гц) значения спектров реакций, полученных для многомассовых систем, не превосходят значения спектров реакции, полученных для одномассового осциллятора. В низкочастотной области, напротив, значения спектров реакции, полученных для многомассовых систем, могут иметь более высокие значения. 2) Расхождение результатов, полученных для 2-х и 5-и массовой систем, незначительно. Спектры реакции для многомассовых систем хорошо коррелируются между собой. В случае, когда требуется уточнение результатов с учетом периода колебаний надопорной конструкции, рекомендуется использование модели конструкции в виде 2-х массовой системы (учет жесткости РМО и надопорной конструкции). Данная модель обеспечивает необходимую практическую точность результатов, нет необходимости учитывать большее количество масс (для данной постановки задачи). 3) Поскольку сейсмоизоляция в виде РМО используется для гашения высокочастотных воздействий, то можно сказать, что расчеты с использованием спектров реакций, полученных по одномассовой системе, будут выполнены с некоторым запасом прочности конструкций. Данный тип расчета особенно актуален, когда надопорная конструкция достаточно жесткая, и ее период колебаний составляет менее 0.5 сек.

СПАСИБО ЗА ВНИМАНИЕ!