Углерод Аллотропные модификации. Положение в таблице Менделеева Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе.

Презентация:



Advertisements
Похожие презентации
Углерод Аллотропные модификации. Положение в таблице Менделеева Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе.
Advertisements

Углерод химический элемент с атомным номером 6 в периодической системе, обозначается символом С (лат. Carboneum), неметалл. Схемы строения различных модификаций.
Углерод Аллотропные модификации. Положение в таблице Менделеева Углерод Carbogenium - 6ой элемент в таблице Менделеева. Он располагается в главной подгруппе.
ФИО: Тимохина Алёна Владимировна Должность: Учитель Химии Место работы: МОБУ «Рассветская СОШ» им. В. В. Лапина.
Аллотропия Аллотропия (от др.-греч. αλλος «другой», τροπος «поворот, свойство») существование одного и того же химического элемента в виде двух и более.
Государственное бюджетное общеобразовательное учреждение общеобразовательная школа 89 Калининского района Санкт-Петербурга Презентация : «Аллотропные модификации.
Фуллерены – молекулярная форма углерода По имени американского инженера и архитектора Ричарда Бакминстера Фуллера, который построил конструкцию купола.
Строение и свойства углерода. Характеристика элемента углерода 1. Положение углерода в ПСХЭ Д.И. Менделеева Д.И. Менделеева 2. Строение атома 3. Свойства.
Химический элемент 4-ой группы главной подгруппы 2-го периода периодической системы Менделеева, порядковый номер 6. Латинское название сагboneum Углерод.
Презентация по теме: Модель строения твёрдых тел.
Фуллерены Фуллерены - молекулярные соединения, принадлежащие к классу аллотропных форм углерода (другие алмаз, карбин и графит) и представляющие собой.
Фуллерены и нанотрубки. Презентацию подготовила Магистр 1 года обучения, Серебрякова. Государственныи ̆ Петрозаводскии ̆ университет | 2010 | Физика твердого тела
Подготовил: Жумагалиев Хаким. Алмаз Алмаз кубический Алмаз гексагональный.
-Состав -Свойства -Применение. Фуллерены Одна из аллотропных форм углерода.
Автор проекта: СенаторовЯрослав 2005 год Студент МГПУ (ХИМИКО- БИОЛОГИЧЕСКОГО ФАКУЛЬТЕТА)
Углеродные нанотрубки и фуллерены
Углерод – химический элемент и простое вещество. Цели урока: Познакомить учащихся с распространением химического элемента углерода в природе Вспомнить.
Фуллерены. Углеродные нанотрубки. Графен. Работу выполнил: Рассадин А.А.
Тема: «Углерод. «Углерод. Его физические и химические свойства»
Графит кристаллическое аллотропное видоизменение углерода, в древности считалось минералом свинца.
Транксрипт:

Углерод Аллотропные модификации

Положение в таблице Менделеева Углерод Carbogenium - 6 ой элемент в таблице Менделеева. Он располагается в главной подгруппе четвертой группы, втором периоде. Углерод-типичный неметалл.

Нахождение в природе В настоящее время известно более миллиона соединений углерода с другими элементами. Их изучение составляет целую науку – органическую химию. В тоже время за изучение свойств чистого углерода ученые взялись сравнительно недавно - около 20 лет назад.

Нахождение в природе Углерод занимает 17-е место по распространенности в земной коре – 0,048%. Но несмотря на это, он играет огромную роль в живой и неживой природе.

Нахождение в природе Углерод входит в состав органических веществ в растительных и живых организмах, в состав ДНК. Содержится в мышечной ткани – 67%, костной ткани – 36% и крови человека (в человеческом организме массой 70 кг в среднем содержится 16 кг связанного углерода).

Свободный углерод В свободном виде углерод встречается в нескольких аллотропных модификациях – алмаз, графит, карбин, крайне редко фуллерены. В лабораториях также были синтезированы многие другие модификации: новые фуллерены, нанотрубки, наночастицы и др.

Алмаз

Графит

Модель фуллерена С 60

Все это - чистый углерод

Алмаз Алмаз – бесцветное, прозрачное, сильно преломляющее свет вещество. Алмаз тверже всех найденных в природе веществ, но при этом довольно хрупок. Он настолько тверд, что оставляет царапины на большинстве материалов. Структура алмаза

Алмаз Плотность алмаза – 3,5 г/см 3, t плав =373 0 С, t кип =4830 о С. Алмаз можно получить из графита при p > 50 тыс. атм. и t о = 1200 о C В алмазе каждый 4-х валентный атом углерода связан с другим атомом углерода ковалентной связью и количество таких связанных в каркас атомов чрезвычайно велико.

Алмаз Непрерывная трехмерная сетка ковалентных связей, которая характеризуется большой прочностью, определяет многие свойства алмаза, так то плохая тепло- и электропроводимость, а также химическая инертность. Алмазы очень редки и ценны, их вес измеряется в каратах (1 карат=200 мг). Ограненный алмаз называют бриллиантом. Знаменитый бриллиант «Кохинор»

Графит Графит – устойчивая при нормальных условиях аллотропная модификация углерода, имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок и оставляет черные следы на бумаге. Структура графита

Графит Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседними, расположенными вокруг него в виде правильного треугольника.

Графит Графит характеризуется меньшей плотностью и твердостью, а также графит может расщепляться на тонкие чешуйки. Чешуйки легко прилипают к бумаге – вот почему из графита делают грифели карандашей. В пределах шестиугольников возникает склонность к металлизации, что объясняет хорошую тепло- и электропроводность графита, а также его металлический блеск. Графитовый электрод

Карбин Карбин был получен в начале 60-х годов В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным, Ю.П. Кудрявцевым. Карбин имеет кристаллическую структуру, в которой атомы углерода соединены чередующимися одинарными и тройными связями. Строение карбина

Карбин Он имеет вид черного мелкокристаллического порошка, однако может существовать в виде белого вещества с промежуточной плотностью. Карбин обладает полупроводниковыми свойствами, под действием света его проводимость резко увеличивается.

Карбин За счет существования различных типов связи и разных способов укладки цепей из углеродных атомов в кристаллической решетке, физические свойства карбина могут меняться в широких пределах. Позднее карбин был найден в природе в виде вкраплений в природном графите, содержащемся в минерале чароит, а также в метеоритном веществе. Метеорит содержащий вкрапления карбина

Другие формы углерода Известны и другие формы углерода, такие как уголь, кокс и сажа. Но все эти формы являются композитами, то есть смесью малых фрагментов графита и алмаза. Сажа

Фуллерены Фуллерены – класс химических соединений, молекулы которых состоят только из углерода, число атомов которого четно, от 32 и более 500, они представляют по структуре выпуклые многогранники, построенные из правильных пяти- и шестиугольников. Фуллерен С 70

Фуллерены Происхождение термина "фуллерен" связано с именем американского архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные конструкции, состоящие из шестиугольников и пятиугольников. Купол Фуллера

Фуллерены В начале 70-х годов физхимик–органик Е.Осава предположил существование полой, высокосимметричной молекулыС 60, со структурой в виде усеченного икосаэдра, похожей на футбольный мяч. Чуть позже (1973 г.) российские ученые Д.А. Бочвар и Е.Г. Гальперин сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность. Первый способ получения и выделения твердого кристаллического фуллерена был предложен в 1990 г. В.Кречмером и Д.Хафманом с коллегами в институте ядерной физики в г. Гейдельберге (Германия).

Фуллерены В противоположность первым двум, графиту и алмазу, структура которых представляет собой периодическую решетку атомов, третья форма чистого углерода является молекулярной. Это означает, что минимальным элементом ее структуры является не атом, а молекула углерода, представляющая собой замкнутую поверхность, которая имеет форму сферы. Модель фуллерена С 60

Фуллерены Наиболее эффективный способ получения фуллеренов основан на термическом разложении графита. На рисунке показана схема установки для получения фуллеренов, которую использовал В.Кретчмер. Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение В. Схема установки для получения фуллеренов 1-графитовые электроды 2-охлаждаемая медная шина 3-медный кожух 4-пружины

Нанотрубки Наряду со сфероидальными углеродными структурами, могут образовываться также и протяженные цилиндрические структуры, так называемые нанотрубки, которые отличаются широким разнообразием физико-химических свойств. Идеальная нанотрубка представляет собой свернутую в цилиндр графитовую плоскость, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Строение нанотрубки

Нанотрубки Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций. Возможные разновидности поперечной структуры многослойных нанотрубок представлены на рисунке. Структура типа "русской матрешки") представляет собой совокупность вложенных друг в друга однослойных нанотрубок (а). Другая разновидность этой структуры, показанная на рисунке б, представляет собой совокупность вложенных друг в друга призм. Наконец, последняя из приведённых структур (в), напоминает свиток..

Заключение Хотя фуллерены имеют короткую историю, это направление науки быстро развивается, привлекая к себе все новых исследователей. Она включает три направления: физика фуллеренов, химия фуллеренов и технология фуллеренов. Физика фуллеренов занимается исследованием структурных, механических, магнитных, оптических свойств фуллеренов и их соединений. Сюда относится также изучение характера взаимодействия между атомами углерода в этих соединениях, свойства и структура систем, состоящих из молекул фуллеренов. Физика фуллеренов является наиболее продвинутой ветвью в области фуллеренов. Химия фуллеренов связана с созданием и изучением новых химических соединений, основу которых составляют фуллерены, а также изучает химические процессы, в которых они участвуют. Следует отметить, что по концепциям и методам исследования это направление химии во многом принципиально отличается от традиционной химии. Технология фуллеренов включает в себя как методы производства фуллеренов, так и различные их приложения.